
© 2020 Arm Limited (or its affiliates)

Unified Virtual Dynamic
Shared Object (vDSO)

An Unexpected Journey

Vincenzo Frascino
<vincenzo.frascino@arm.com>

Linux Plumbers 2020 – linux/arch/* Microconference

August, 25 2020

2 © 2020 Arm Limited (or its affiliates)

Summary

• vDSO: Introduction

• vDSO: State of the Art

• vDSO: What’s Next?

© 2020 Arm Limited (or its affiliates)

vDSO: Introduction

4 © 2020 Arm Limited (or its affiliates)

What is a vDSO?

vDSO: virtual Dynamic Shared Object

• A shared object mainly intended to
provide virtual “syscalls in userspace”.

• It is mapped by the kernel in all the
userspace processes.

• It is linked during the kernel compilation
process as a shared object (.so).

arch version year

ppc64 2.6.12 2005

i386 2.6.18 2006

x86_64 2.6.23 2007

mips 2.6.34 2010

arm64 3.7 2012

arm 4.1 2015

… … …

5 © 2020 Arm Limited (or its affiliates)

vDSO Implementation (1/2)

USERSPACE
KERNEL

libc init

dynamic linker

elf loader
execve()

• Looks up for the function symbols in [vdso]

• If the symbols are present sets the function
pointer (O/W libc provides fallbacks on syscalls)

• Looks for AT_SYSINFO_EHDR in AUXV

• If it is set, links the vDSO shared object

• Maps the vDSO code and data pages

• Sets AT_SYSINFO_EHDR in AUXV

6 © 2020 Arm Limited (or its affiliates)

vDSO Implementation (2/2)

settimeofday()

update_vsyscall_tz()

update_vsyscall()

timekeeping_update() USERSPACEKERNEL

AT_SYSINFO_EHDR

PAGE_SIZE

PAGE_SIZE

vdso_data

__vdso_gettimeofday()
__vdso_clock_gettime()
__vdso_clock_getres()

…

gettimeofday()gettimeofday_fallback()

© 2020 Arm Limited (or its affiliates)

vDSO: State of the Art

8 © 2020 Arm Limited (or its affiliates)

Unified vDSO

Prior to the introduction of the Unified vDSO, every architecture implemented their own vDSO library in the
architectural code.

Scope: Identify the commonalities in between the architectures and try to consolidate the common code
paths.

• Every architecture defines the arch specific hooks in a header in "asm/vdso/".

• The generic implementation includes the arch specific one and lives in "lib/vdso".

• The arch specific code for gettimeofday lives in "<arch path>/vdso/gettimeofday.c" and includes the generic code only.

• The generic implementation of update_vsyscall and update_vsyscall_tz lives in kernel/vdso and provides the bindings that can be
implemented by each architecture.

• Each architecture provides its implementation of the bindings in "asm/vdso/vsyscall.h".

• This approach makes it possible to consolidate the common code in a single place with the benefit of avoiding code duplication.

• CLOCK_BOOTTIME and CLOCK_TAI introduced for all the supported platforms.

Recent activitiesvDSO HeadersUnified vDSO

9 © 2020 Arm Limited (or its affiliates)

vDSO Headers

Scope: The vDSO code runs entirely in userspace, so it
should not be relying on any kernel header.

• Extract from include/linux/ the vDSO required
kernel interface and place it in include/vdso/

• Make sure that where meaningful the kernel
includes "vdso" headers.

• Limit the vDSO library to include headers coming
only from UAPI and "vdso" (with 2 exceptions
compiler.h for barriers and param.h for HZ).

• Adapt all the architectures that support the unified
vDSO library to use "vdso" headers.

Recent activitiesvDSO HeadersUnified vDSO

Back in July last year we started having a problem in building compat

vDSOs on arm64 [1] [2] that was not present when the arm64 porting to

the Unified vDSO was done. In particular when the compat vDSO on such

architecture is built with gcc it generates the warning below:

In file included from ./arch/arm64/include/asm/thread_info.h:17:0,

from ./include/linux/thread_info.h:38,

from ./arch/arm64/include/asm/preempt.h:5,

from ./include/linux/preempt.h:78,

from ./include/linux/spinlock.h:51,

from ./include/linux/seqlock.h:36,

from ./include/linux/time.h:6,

from ./lib/vdso/gettimeofday.c:7,

from <command-line>:0:

./arch/arm64/include/asm/memory.h: In function ‘__tag_set’:

./arch/arm64/include/asm/memory.h:233:15: warning: cast from pointer

to integer of different size [-Wpointer-to-int-cast]

u64 __addr = (u64)addr & ~__tag_shifted(0xff);

^

…

10 © 2020 Arm Limited (or its affiliates)

Recent Activities

• riscv architecture introduced vDSO support based on Unified vDSOs.

• PowerPC and s390 portings to the Unified vDSO library are on the way.

• Time namespaces were introduced for the kernel leveraging the work done for Unified
vDSOs.

• x86_64 and arm64 (5.9-rc1) portings of Time namespaces has been merged.

Recent activitiesvDSO HeadersUnified vDSO

© 2020 Arm Limited (or its affiliates)

vDSO: What’s Next?

12 © 2020 Arm Limited (or its affiliates)

Extend the Unified vDSOs to more Syscalls (1/2)

“vDSO Principle”: Do not enter the kernel if we do not have to because it is costly.

• Libc already helps because it might not do a syscall at all if it can be avoided.

• It takes advantage of the vDSO library or caches information (e.g. getpid()).

• In doing so, the libc adds some complexity to its implementation (e.g. to cache getpid(),
libc has to understand concepts like fork()/clone() so that the caching is correct).

• Since the vDSO library is already there, we could move to a model in which the cached
information is provided via the library in an efficient way.

• This approach would centralize the information, simplify the implementation and
improve the memory utilization (no caching required).

• But extending the vDSO library to encompass new syscalls raises some questions.

13 © 2020 Arm Limited (or its affiliates)

Extend the Unified vDSOs to more Syscalls (2/2)

Extending the Unified vDSOs to more syscalls raises some questions:

• Which information do we want to make accessible via vDSO?

• Are those private to a process?

• Is there a risk if another process accesses them?
• Exposing private information requires a per process page instead of a global one

• If we keep global vDSO data pages what is the best approach a per-thread one or a per-
cpu one?

• Shall we make the vDSO data pages writable?
• Should the kernel trust a writable vDSO data pages?
• Might expose the kernel to “time of check – time of use” (TOCTOU) attacks.
• Might require to encrypt the datapage in a way that can be decrypted/accessed only by the vDSO

library.

14 © 2020 Arm Limited (or its affiliates)

Analysing a real world scenario

0

100

200

300

400

500

600

getpid() getegid() getgid() geteuid() getuid() gettid() getppid()

Number of syscalls

Number of syscalls

Booting Ubuntu 18.04.5 (SYSCALL_DEFINE0 class)

{

static int i = 0;

printk("%s(): %d\n", __func__, i);

i++;

}

15 © 2020 Arm Limited (or its affiliates)

vDSO Per CPU Investigation
USERSPACEKERNEL

AT_SYSINFO_EHDR

VDSO_PAGES_SIZE

PAGE_SIZE

#define VDSO_PAGES_SIZE PAGE_ALIGN(sizeof(vdso_data) + NR_CPUS * sizeof(vdso_per_cpu_data))

vdso_data

vdso_per_cpu_data[]

…

getpid()

…

offset

The vdso_per_cpu_data[] offset is
exposed by the kernel in an
architecture specific way. The user
should be only able to read it.

16 © 2020 Arm Limited (or its affiliates)

vDSO Per THREAD Investigation
USERSPACEKERNEL

AT_SYSINFO_EHDR

VDSO_PAGES_SIZE

PAGE_SIZE

#define VDSO_PAGES_SIZE PAGE_ALIGN(sizeof(vdso_data) + NR_THREADS * sizeof(vdso_per_thread_data))

vdso_data

vdso_per_thread_data[]

…

getpid()

…

offset

The vdso_per_thread_data[] offset
is exposed by the kernel in an
architecture specific way. The user
should be only able to read it.

VDSO_PAGES are private to
the process.

System wide NR_THREADS is bounded as
[20, FUTEX_TID_MASK] (Linux 4.1). It
can be modified by the user via:

/proc/sys/kernel/threads-max

The written value is checked against the
occupation of the thread struct in RAM
(< 1/8).

There is no per process MAX_THREADS
concept.

17 © 2020 Arm Limited (or its affiliates)

Per THREAD vs Per CPU vDSO

Per THREAD

Concept: Each process has its own
private vDSO page. Can embed per
thread structs for a better coverage.

PRO: Can expose process private data.

PRO: More flexible,allows to implement
more system calls.

CON: Requires more memory.

CON: Implementation is more complex.

Per CPU

Concept: At a given point in time on
each CPU runs a single thread.

PRO: Can reuse global vDSO pages
(simpler to implement, less invasive).

PRO: Better memory impact.

CON: Cannot expose process private
data.

CON: Less flexible, allows to implement
a more restricted number of system
calls.

18 © 2020 Arm Limited (or its affiliates)

Per CPU Implementation (Datapage)

• The datapage has been extended to include
vdso_per_cpu_data.

• Each CPU has its own data allocated at the
offset defined as smp_processor_id() *
sizeof(struct vdso_per_cpu_data).

• The number of data pages that an
architecture needs reserve depends on
NR_CPUS and the size of vdso_per_cpu_data.

• The way in which the offset is passed to the
userspace is architecture specific.

struct vdso_per_cpu_data {

/* getcpu() data */

u32 cpu;

u32 node;

/* getpid() data */

s32 pid;

/* gettid() data */

s32 tid;

/* getuid() data */

u32 uid;

/* geteuid() data */

u32 euid;

/* getgid() data */

u32 gid;

/* getegid() data */

u32 egid;

/* getppid() data */

s32 ppid;

};

struct vdso_vsys_data {

/* Note: vdso_data must be kept as the first

* member of this structure */

struct vdso_data data[CS_BASES];

/* Data for per cpu information */

struct vdso_per_cpu_data cpu_data[];

};

19 © 2020 Arm Limited (or its affiliates)

Per CPU Implementation (kernel/vdso.c)

• vdso_per_cpu_update() is invoked during
start_thread() and switch_thread().

• Its logic is similar in behaviour to what
happens in update_vsyscall().

• It currently uses only generic kernel
functions, which makes the
implementation of most of the newly
introduced functions architecture
independent.

• The porting to other architectures relies
only on providing a mechanism to
update/access the correct offsets and the
fallbacks for the various system calls.

static __always_inline

void vdso_per_cpu_update(struct task_struct *tsk, size_t offset)

{

struct vdso_vsys_data *data =

(struct vdso_vsys_data *)vdso_per_cpu_data;

unsigned int cpu;

if (offset) {

cpu = smp_processor_id();

/* getpid() data update */

data->cpu_data[cpu].pid = task_tgid_vnr(tsk);

/* gettid() data update */

data->cpu_data[cpu].tid = task_pid_vnr(tsk);

/* getuid() data update */

data->cpu_data[cpu].uid =

from_kuid_munged(task_user_ns(tsk), task_uid(tsk));

/* geteuid() data update */

data->cpu_data[cpu].euid =

from_kuid_munged(task_user_ns(tsk), task_euid(tsk));

/* getgid() data update */

data->cpu_data[cpu].gid =

from_kgid_munged(task_user_ns(tsk), task_gid(tsk));

/* getegid() data update */

data->cpu_data[cpu].egid =

from_kgid_munged(task_user_ns(tsk), task_gid(tsk));

/* getppid() data update */

data->cpu_data[cpu].ppid = vdso_getppid(tsk);

}

}

20 © 2020 Arm Limited (or its affiliates)

Per CPU Implementation (vDSO data update)
void vdso_per_cpu_start_thread(struct task_struct *tsk)

{

size_t offset = vdso_per_cpu_offset();

vdso_per_cpu_update(tsk, offset);

arch_notify_vdso_per_cpu_offset(offset);

}

void vdso_per_cpu_switch_thread(struct task_struct *tsk)

{

size_t offset = vdso_per_cpu_offset();

vdso_per_cpu_update(tsk, offset);

arch_notify_vdso_per_cpu_offset(offset);

}

void vdso_per_cpu_flush_thread(void)

{

arch_notify_vdso_per_cpu_offset(0);

}

start

ready

run

sleep
wait

dead

block

switch

21 © 2020 Arm Limited (or its affiliates)

Per CPU Implementation (lib/vdso)

• With this implementation the generic vDSO library
code looks very simple:
• It accesses the per cpu data at the correct offset.
• Returns the value to the userspace.
• Note: the ABI consistency with the system calls will be

evaluated at a later stage, before the series will be sent
out for review.

• With this logic, work has been done to implement:
• getpid()
• gettid()
• getgid()
• getegid()
• getuid()
• geteuid()
• getppid()
• getcpu()

• The implementation has been tested on arm64.

static int __cvdso_getpid(void)

{

struct vdso_per_cpu_data *cpu_data =

__arch_get_vdso_per_cpu_data();

int pid = 0;

if (cpu_data) {

pid = cpu_data->pid;

return pid;

}

return getpid_fallback();

}

22 © 2020 Arm Limited (or its affiliates)

Open points and discussion
Git Repo: git://linux-arm.org/linux-vf.git vdso/lpc2020

• What is the best way to implement the offset mechanism on other architectures?

• On arm64 we are using the TPIDRRO_EL0 register to store the offset.

• Are there syscalls that would definitely benefit from this approach and should be considered
first?

• Which naming convention should we adopt for the extended library?

• vsyscall is already taken for other purposes.

• How do we make sure that we do not duplicate the code once the extended vDSOs are in place?

• In future, where possible, should we try to go vDSO first when we introduce new syscalls?

• The prototype for arm64 is currently based on 5.8. The rebase on 5.9-rc1 requires it to work with
time namespaces which rely already on multiple data pages.

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

