
  

D  A  M  O  N:
Data Access MONitoring Framework for Fun 

and Memory Management Optimizations

SeongJae Park <sjpark@amazon.de>

KernelSummit @ LinuxPlumbersConf, August 2020



  

Disclaimer

● The views expressed herein are those of the speaker;
they do not reflect the views of his employers

● My cat might come up on the screen.  The cat has no ‘--silent’ option.
Sorry, please don’t surprise; keep calm and blame COVID19 :P

https://twitter.com/sjpark0x00/status/1295387149018300419/photo/1

https://twitter.com/sjpark0x00/status/1295387149018300419/photo/1


  

I, SeongJae Park <sjpark@amazon.de>

● Kernel / Hypervisor Engineer at Amazon Web Services

● Interested in the memory management and the parallel programming

– Before joining Amazon, developed
Guaranteed Contiguous Memory Allocator and
HTM-based update-side synchronization for RCU on NUMA systems

https://sjp38.github.io/post/gcma/
https://sjp38.github.io/post/rcx/


  

TL; DR

● When: Now

● Who: Sysdmins and kernel subsystems

● Where: On CONFIG_DAMON=y kernel

● What: Can monitor the data accesses

● Why: For fun and better MM

● How (for sysadmins):
# damo record $(pidof my_workload)
# damo report heats –heatmap a.png;
# eog a.png

● Review the patches, please!

https://lore.kernel.org/linux-mm/20200817105137.19296-1-sjpark@amazon.com/


  

Overview

● Motivation

● DAMON

● Live Demo

● Evaluation

● Plans

● Conclusion



  

Overview

● Motivation

● DAMON

● Live Demo

● Evaluation

● Plans

● Conclusion



  

Data Access Patterns and The Memory Management

● For a good memory managements, access patterns are needed
(e.g., to keep warm data close and hot data closer to CPU)

● Linux kernel memory management (MM) gets the information with

– PTE ‘Accessed’ bits manipulation, fundamentally

● Cons: Coarse

– Only accessed or not, between some events such as memory pressures

– 2 LRU lists and heuristics help this a lot
(The heuristics makes MM more complicated, though)

● Pros: Low overhead

– Extracting finer information will result in higher overhead

● So, it’s a trade-off that carefully taken.  But, wait... is it still the best?



  

Is MM Happy In This Modern World

● Recent trends might changed some things

– Working sets are continuously growing 

– DRAM is relatively reducing due to the price and energy consumption

– New memory devices that slower but cheaper and larger than DRAM evolving

● Based on the trend, a number of optimizations made

– The works optimize MM in creative ways using finer data access patterns

– Most of the works show impressive improvements;
Even my simple approach also showed up to 2.55x performance

● But, most of the works had only small interest in the pattern extraction

– Only naive approaches incurring high/unscalable overhead are used

– This made most of the works not acceptable in the mainline

– So, MM needs a subsystem for the fine information, first

https://dl.acm.org/doi/10.1145/3366626.3368125


  

Overview

● Motivation

● DAMON

● Live Demo

● Evaluation

● Plans

● Conclusion



  

Overview

● Motivation

● DAMON

– What it is and what you can get from it

– How to use it

– How it works

– Misc (how it can be used from user space, how it is tested)

● Live Demo

● Evaluation

● Plans

● Conclusion



  

Overview

● Motivation

● DAMON

– What it is and what you can get from it

– How to use it

– How it works

– Misc (how it can be used from user space, how it is tested)

● Live Demo

● Evaluation

● Plans

● Conclusion



  

DAMON: Data Access MONitor

● Data access monitoring framework for the Linux kernel

– Provides access frequency of each address range

DAMON

For vaddr For phys addr

debugfs

DAMO

tracepoints

PTEvma rmap

Ke
rn
el

spa
ce

Us
er

spa
ce

DAMON-based
Operation Schemes

Data Accesses
Recording

perf

The framework



  

DAMON: Data Access MONitor

● Data access monitoring framework for the Linux kernel

– Provides access frequency of each address range

– Both kernel space and user space can use it for
analysis, memory management optimizations, and fun ;)

DAMON

For vaddr For phys addr

debugfs

DAMO

tracepoints

PTEvma rmap

Ke
rn
el

spa
ce

Us
er

spa
ce

DAMON-based
Operation Schemes

Data Accesses
Recording

perf User space applications

Kernel space applications

The framework



  

Main Design Requirements

● DAMON is desgined to mitigate the overhead-accuracy problem

● For the goal, it fulfills below 4 requirements

– Accuracy: The monitoring result should be useful for DRAM level MM

– Overhead: Should light-weight enough for online monitoring

– Scalability: The upper-bound overhead should be controllable regardless 
of the size of the monitoring target systems and workloads

– Generality: The mechanism should be applicable for wide use-cases 
(e.g., virtual address, physical address, cache-line granularity, ...)



  

Overview

● Motivation

● DAMON

– What it is and what you can get from it

– How to use it

– How it works

– Misc (how it can be used from user space, how it is tested)

● Live Demo

● Evaluation

● Plans

● Conclusion



  

The Usage: Programming Interface

● Step 1: Set the requests in ‘struct damon_ctx’ instances

– How, what memory regions should be monitored
● The upper-bound monitoring overhead is included here (how)

– What function should be periodically called back with the results
● Users can read the monitoring results inside the function

● Step 2: Pass the requests to DAMON via ‘damon_start()’

– Then, a kernel thread for the monitoring is created for each request

– The thread does monitoring and calls the notification callback

● Unless ‘damon_start()’ is called, the system gets no change at all

– No overhead incurred by just installing DAMON=y kernel

– IOW, No harm in DAMON=y ;)



  

The Usage: In a Pseudo-Code

void on_notification(struct damon_ctx *c);

static int __init demo(void)
{

struct damon_ctx ctx = {
.aggr_interval = 100,
.aggregate_cb = on_notification,
[...]

};
damon_start(&ctx, 1);
msleep(1000*60);
damon_stop(&ctx, 1);
return 0;

}

void on_notification(struct damon_ctx *c);
{

struct damon_region *r;

damon_for_each_region(r, c)
pr_info(“%lu-%lu accessed %u times during last 100ms\n”,

r->start, r->end, r->nr_accesses);
}

Notify me and reset
‘->nr_accesses’ every 100ms

Call ‘on_notification’
for the notification



  

Overview

● [...]

● DAMON

– What it is and what you can get from it

– How to use it

– How it works
● control of the overhead and accuracy

● Support of Various Address Spaces

● DAMON-based MM optimizations

– Misc (how it can be used from user space, how it is tested)

● [...]



  

Overview

● [...]

● DAMON

– What it is and what you can get from it

– How to use it

– How it works
● control of the overhead and accuracy

● Support of Various Address Spaces

● DAMON-based MM optimizations

– Misc (how it can be used from user space, how it is tested)

● [...]



  

Control of Overheads and Monitoring Accuracy

● DAMON becomes DAMON in below steps

– Straightforward Access Monitoring (Fixed granularity)

– Region-based Sampling (Elastic granularity)

– Adaptive Regions Adjustment (Best-effort accuracy)



  

Straightforward Access Monitoring (Fixed Granularity)

● Periodically check if each monitoring target page is accessed

– Let’s call the period as ‘sampling interval’

● Aggregate the observations into access frequencies

– Count number of observed accesses and periodically reset the counter

– Let’s call the period as ‘aggregation interval’

● By notifying the users just before the reset of the counter, we can 
provide the access frequency of the pages to the users

● Pros: Fine-grained (page size) monitoring

– Might not strictly required in some performance-centric optimizations

● Cons: High and unscalable monitoring overhead

– The overhead arbitrarily increases as the target size grows



  

Region-based Sampling (Elastic Granularity)

● Let’s define data objects in access pattern oriented way

– “A data object is a memory region that all page frames in the region have 
similar access frequencies”

– By the definition, if a page in a region is accessed, other pages of the 
region has probably accessed, and vice versa

– Thus, checks for the other pages can be skipped

● By limiting the number of regions, we can control the monitoring 
overhead regardless of the target size

● However, the accuracy will degrade if the regions are not properly set

Hot region

Cold region

Target region

(Will result in poor accuracy)

(Will result in reasonable accuracy)



  

Adaptive Regions Adjustment (Best-effort Accuracy)

● Starts with minimal number of regions 
covering entire target memory areas

● For each aggregation interval,

– merge adjacent regions having similar 
access frequencies to one region

– Split each region into two (or three, depend 
on state) randomly sized regions

– Avoid merge/split if the number of regions 
might be out of the user-defined range

● If a split was meaningless, next merge 
process will revert it (vice versa)

● In this way, we can let users limit the upper 
bound overhead while preserving best-
effort accuracy Hot region (AF 1.0)

Cold region (AF 0)

Split

Merge

Split

Merge

Target region

AF:    0.5     0      0      0

AF: (Observed) Access Frequency

AF: 0    0.9     0        0

Merge



  

Overview

● [...]

● DAMON

– What it is and what you can get from it

– How to use it

– How it works
● control of the overhead and accuracy

● Support of Various Address Spaces

● DAMON-based MM optimizations

– Misc (how it can be used from user space, how it is tested)

● [...]



  

Primitives for Fundamental Access Monitoring

● The previous descriptions (intentionally) didn’t explain

– How the monitoring target regions identified, and

– How each page is checked whether it has accessed or not

● These two unexplained tasks are

– Dependent on the detailed use-cases
● Virtual address space VS physical address space

● Super high accuracy VS only reasonable accuracy
(suppose some arch provides dedicated super light access check primitives)

– Independent with the overhead-accuracy handling core logic



  

Many Use Cases Are Imaginable

● There are many realistic use cases including

– Full or parts (e.g., stack) of virtual address spaces of specific processes

– Full or parts (e.g., NUMA) of physical address spaces of the machine

– Memory regions backed by specific file or device

– PTE Accessed bit or LRU position as the access check primitive

– Dedicated h/w feature of special arch as the access check primitive

● Implementing those in DAMON makes it only complex and inflexible



  

The Core Logics Are Highly Simple and Flexible

● The minimal access check granularity could be anything

– The description mentioned page size, but it doesn’t have to be

– Page size, cache line size, 42 bytes, or even one byte is OK
if the regions are addressable and access check is possible

● ‘Adaptive regions adjustment' can be turned off

– Setting the min # of regions same to the max # of regions will turn off the 
mechanism, as any split and merge will violate the condition

– Setting the two values same to ``target_size / PAGE_SIZE`` will 
result in the straightforward page granularity monitoring

● Even multiple CPUs can be used if necessary

– If you could afford multiple CPUs for super high accuracy, you could
1) partition the target region into multiple requests and
2) send those to `damon_start()` at once



  

Separation of The Primitives and The Core Logic

● The core logic uses the primitives via only cleanly defined interfaces

● The interface is 4 function pointers in the ‘struct damon_ctx’

– init_regions(): Initialize the monitoring target regions

– update_regions(): Update the monitoring target regions if there were 
some changes (e.g., mmap() or hot-plug)

– prepare_access_check():
Set next sampling target address and mark it not accessed

– access_check(): Check if the sampling target address is accessed

● Any primitives following the interface can be configured to be used



  

DAMON is Extensible

● DAMON users can extend DAMON for their specific usages

– Implement own primitives and configure damon_ctx to use it

● By default, reference implementations of the primitives for the virtual 
address spaces and the physical address space are provided

DAMON

For vaddr For phys addr

debugfs

DAMO

tracepoints

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

DAMON-based
Operation Schemes

Data Accesses
Recording

perf

Framework (core logics)

Low level primitives



  

Overview

● [...]

● DAMON

– What it is and what you can get from it

– How to use it

– How it works
● control of the overhead and accuracy

● Support of Various Address Spaces

● DAMON-based MM optimizations

– Misc (how it can be used from user space, how it is tested)

● [...]



  

● Now DAMON-based optimizations are available

– Both the kernel space and the user space can make the optimization by:
● Step 1: Run DAMON

● Step 2: Analyze the monitoring results offline or online

● Step 3: Make some changes based on the analysis

– The works unaccepted due to the problem could revisited

● I will optimize the kernel in this way, once DAMON is merged in

– So the upstream kernels will just work (nearly) optimal someday

– However, downstream kernel / user space optimizations will still required
● Because special cases always exist

The DAMON-based Optimizations



  

Risks of Non-upstream DAMON-based Optimizations

● It could be difficult, dangerous, dirty, or restrictive

● Optimizations in the kernel space could be difficult and dangerous

– Not every sysadmin is experienced kernel programmer

– Kernel bugs are dangerous

● Optimizations in the user space could be dirty and restrictive

– Receiving and analyzing the results require some lines of code
● No library for now; To be honest, I want to do everything on the shell

– Actions to monitored memory regions are restricted
(madvise_process() might solve most of this problem)



  

DAMOS: DAMON-based Operation Schemes

● Yet another kernel feature for easy MM optimizations built on DAMON

● Receives ‘schemes’, each constructed with

– 3 conditions: Size, access frequency, and age of memory regions

– 1 memory management action
● Currently supported actions include:

MADV_(WILLNEED|COLD|PAGEOUT|HUGEPAGE|NOHUGEPAGE)

● DAMON automatically finds the memory region of the condition and 
applies the action to the region

● Now users can make DAMON-based optimizations without code

# format is:
# <min/max size> <min/max frequency (0-100)> <min/max age> <action>
#
# if a region of size >=4KB didn’t accessed for >=2mins, page out
4K max      0 0     2m max pageout



  

DAMOS Stats

● Special DAMOS action, ‘stat’ does nothing but count

– Total number of regions matched in the condition

– Total size of regions matched in the condition

● Users can directly get only meaningful numbers such as

– Size and number of regions of varying access frequencies and ages

– No need to get the full results and manually analyze it

# format is:
# <min/max size> <min/max frequency (0-100)> <min/max age> <action>
#
min max      0  49     2mins max stat
min max      50 100     2mins max stat
min max      0  49     4mins max stat
min max      50 100     4mins max stat



  

Overview

● Motivation

● DAMON

– What it is and what you can get from it

– How to use it

– How it works

– Misc (how it can be used from user space, how it is tested)

● Live Demo

● Evaluation

● Plans

● Conclusion



  

Interfaces for The User Space

● Tracepoint

– Provide the monitoring results

– The monitoring should be manually turned on/off

● DAMON debugfs interface

– Receive monitoring requests and provide monitoring records

– Support both the virtual address and physical address

– The ABI for development of other user space tools

● User space tool: DAMON Operator (DAMO)

– A reference implementation of user space tool built on the debugfs

– Provide human friendly interfaces and monitoring results visualization



  

Tests

● DAMON has several automated tests for it

● Inside the patchset (should be merged together)

– User space tests: Test debugfs interface based on kselftest

– Unit tests: Test internal code based on kunit

● Outside the patchset (would not be merged in the mainline)

– Correctness tests: Time consuming tests including build/accuracy tests

– Performance tests: Constructed with 25 realistic workloads

● Outside-the-patchset tests might be open-sourced eventually

– Hope to be also used as a getting started guide



  

Live Demo using DAMO

$ git clone https://github.com/sjp38/masim
$ cd masim; make; ./masim ./configs/zigzag.cfg &
$ sudo damo record $(pidof masim)

$ damo report raw
$ damo report heats --heatmap access_pattern_heatmap.png
$ damo report wss --range 0 101 1 --plot wss_dist.png
$ damo report wss --range 0 101 1 –sortby time –plot wss_time.png

A demo video is also available: https://youtu.be/l63eqbVBZRY

https://github.com/sjp38/masim
https://youtu.be/l63eqbVBZRY


  

Overview

● Motivation

● DAMON

● Live Demo

● Evaluation

● Plans

● Conclusion



  

Evaluation Questions

● How lightweight DAMON is?

● How accurate DAMON is?

● How useful DAMON-based optimizations are?



  

Evaluation Environment

● Test machine

– QEMU/KVM virtual machine on AWS EC2 i3.metal instance

– 36 vCPUs, 128 GB memory, 4 GB zram swap device

– Ubuntu 18.04, THP enabled policy madvise

– Linux v5.8 + DAMON patchsets (The source tree is available)

● Workloads: 25 realistic benchmark workloads

– 13 workloads from PARSEC3

– 12 workloads from SPLASH-2X

● DAMON monitoring attributes: The default values

– 5ms sampling, 100ms aggregation, and 1s regions update intervals

– Number of regions: [10, 1000]

https://aws.amazon.com/ec2/instance-types/i3/
https://github.com/sjp38/linux/tree/damon/for_ksummit_2020
https://parsec.cs.princeton.edu/parsec3-doc.htm
https://parsec.cs.princeton.edu/parsec3-doc.htm#splash2x


  

Evaluation Targets

● Variants

– orig: DAMON turned off (same to vanilla v5.8)

– rec: DAMON for virtual address of the workload turned on

– prec: DAMON for entire physical address of the system turned on

– thp: THP enabled policy set always (to be compared with ethp)

– ethp: ethp DAMON-based operation scheme is applied

– prcl: prcl DAMON-based operation scheme is applied

$ cat ethp.damos
# for regions having 5/100 access frequency, apply MADV_HUGEPAGE
min max 5 max min max hugepage
# for regions >=2MB and not accessed for >=7 seconds, apply MADV_NOHUGEPAGE
2M max min min 7s max nohugepage

$ cat prcl.damos
# for regions >=4KB and not accessed for >=10 seconds, apply MADV_PAGEOUT
4K  max 0 0 10s max pageout



  

Evaluation Methodology

● Measurement

– Runtime of the workload

– System memory usage (MemTotal – MemFree)

– Residential Set Size (RSS) of the workload

– For each of the workload x variant combinations (25 x 6 = 150)

– Memory usages are periodically measured and averaged

● Every data is average of 5 different runs (150 x 5 = 750)

– Run each evaluation on 5 different QEMU VMs on different i3.metal instance

– Effects from weird outliers might be minimized (still fluctuates, though)

● The test automation code might be open-sourced at last

● Detailed results are available online

https://damonitor.github.io/test/result/perf/next/html/index.html


  

Runtime

runtime                 orig     rec      (overhead) prec     (overhead) thp      (overhead) ethp     (overhead) prcl     
(overhead)
parsec3/blackscholes    137.688  139.910  (1.61)     138.226  (0.39)     138.524  (0.61)     138.548  (0.62)     150.562  (9.35)
parsec3/bodytrack       124.496  123.294  (-0.97)    124.482  (-0.01)    124.874  (0.30)     123.514  (-0.79)    126.380  (1.51)
parsec3/canneal         196.513  209.465  (6.59)     223.213  (13.59)    189.302  (-3.67)    199.453  (1.50)     242.217  (23.26)
parsec3/dedup           18.060   18.128   (0.38)     18.378   (1.76)     18.210   (0.83)     18.397   (1.87)     20.545   (13.76)
parsec3/facesim         343.697  344.917  (0.36)     341.367  (-0.68)    337.696  (-1.75)    344.805  (0.32)     361.169  (5.08)
parsec3/ferret          288.868  286.110  (-0.95)    292.308  (1.19)     287.814  (-0.36)    284.243  (-1.60)    284.200  (-1.62)
parsec3/fluidanimate    342.267  337.743  (-1.32)    330.680  (-3.39)    337.356  (-1.43)    340.604  (-0.49)    343.565  (0.38)
parsec3/freqmine        437.385  436.854  (-0.12)    437.641  (0.06)     435.008  (-0.54)    436.998  (-0.09)    444.276  (1.58)
parsec3/raytrace        183.036  182.039  (-0.54)    184.859  (1.00)     187.330  (2.35)     185.660  (1.43)     209.707  (14.57)
parsec3/streamcluster   611.075  675.108  (10.48)    656.373  (7.41)     541.711  (-11.35)   473.679  (-22.48)   815.450  (33.45)
parsec3/swaptions       220.338  220.948  (0.28)     220.891  (0.25)     220.387  (0.02)     219.986  (-0.16)    -100.000 (0.00)
parsec3/vips            87.710   88.581   (0.99)     88.423   (0.81)     88.460   (0.86)     88.471   (0.87)     89.661   (2.22)
parsec3/x264            114.927  117.774  (2.48)     116.630  (1.48)     112.237  (-2.34)    110.709  (-3.67)    124.560  (8.38)
splash2x/barnes         131.034  130.895  (-0.11)    129.088  (-1.48)    118.213  (-9.78)    124.497  (-4.99)    167.966  (28.19)
splash2x/fft            59.805   60.237   (0.72)     59.895   (0.15)     47.008   (-21.40)   57.962   (-3.08)    87.183   (45.78)
splash2x/lu_cb          132.353  132.157  (-0.15)    132.473  (0.09)     131.561  (-0.60)    135.541  (2.41)     141.720  (7.08)
splash2x/lu_ncb         149.050  150.496  (0.97)     151.912  (1.92)     150.974  (1.29)     148.329  (-0.48)    152.227  (2.13)
splash2x/ocean_cp       82.189   77.735   (-5.42)    84.466   (2.77)     77.498   (-5.71)    82.586   (0.48)     113.737  (38.38)
splash2x/ocean_ncp      154.934  154.656  (-0.18)    164.204  (5.98)     101.861  (-34.26)   142.600  (-7.96)    281.650  (81.79)
splash2x/radiosity      142.710  141.643  (-0.75)    143.940  (0.86)     141.982  (-0.51)    142.017  (-0.49)    152.116  (6.59)
splash2x/radix          50.357   50.331   (-0.05)    50.717   (0.72)     45.664   (-9.32)    50.222   (-0.27)    73.981   (46.91)
splash2x/raytrace       134.039  132.650  (-1.04)    134.583  (0.41)     131.570  (-1.84)    133.050  (-0.74)    141.463  (5.54)
splash2x/volrend        120.769  120.220  (-0.45)    119.895  (-0.72)    120.159  (-0.50)    119.311  (-1.21)    119.581  (-0.98)
splash2x/water_nsquared 376.599  373.411  (-0.85)    382.601  (1.59)     348.701  (-7.41)    357.033  (-5.20)    397.427  (5.53)
splash2x/water_spatial  132.619  133.432  (0.61)     135.505  (2.18)     134.865  (1.69)     133.940  (1.00)     148.196  (11.75)
total                   4772.510 4838.740 (1.39)     4862.740 (1.89)     4568.970 (-4.26)    4592.160 (-3.78)    5189.560 (8.74)

This is also available online.
Summarized analysis is in following slide, 
so you don’t need to read this now.

https://damonitor.github.io/doc/html/v20/vm/damon/eval.html


  

System Memory Usage (MemTotal - MemFree)

memused.avg             orig         rec          (overhead) prec         (overhead) thp          (overhead) ethp         (overhead) prcl         (overhead)
parsec3/blackscholes    1825022.800  1863815.200  (2.13)     1830082.000  (0.28)     1800999.800  (-1.32)    1807743.800  (-0.95)    1580027.800  (-13.42)
parsec3/bodytrack       1425506.800  1438323.400  (0.90)     1439260.600  (0.96)     1400505.600  (-1.75)    1412295.200  (-0.93)    1412759.600  (-0.89)
parsec3/canneal         1040902.600  1050404.000  (0.91)     1053535.200  (1.21)     1027175.800  (-1.32)    1035229.400  (-0.55)    1039159.400  (-0.17)
parsec3/dedup           2526700.400  2540671.600  (0.55)     2503689.800  (-0.91)    2544440.200  (0.70)     2510519.000  (-0.64)    2503148.200  (-0.93)
parsec3/facesim         545844.600   550680.000   (0.89)     543658.600   (-0.40)    532320.200   (-2.48)    539429.600   (-1.18)    470836.800   (-13.74)
parsec3/ferret          352118.600   326782.600   (-7.20)    322645.600   (-8.37)    304054.800   (-13.65)   317259.000   (-9.90)    313532.400   (-10.96)
parsec3/fluidanimate    651597.600   580045.200   (-10.98)   578297.400   (-11.25)   569431.600   (-12.61)   577322.800   (-11.40)   482061.600   (-26.02)
parsec3/freqmine        989212.000   996291.200   (0.72)     989405.000   (0.02)     970891.000   (-1.85)    981122.000   (-0.82)    736030.000   (-25.59)
parsec3/raytrace        1749470.400  1751183.200  (0.10)     1740937.600  (-0.49)    1717138.800  (-1.85)    1731298.200  (-1.04)    1528069.000  (-12.66)
parsec3/streamcluster   123425.400   151548.200   (22.79)    144024.800   (16.69)    118379.000   (-4.09)    124845.400   (1.15)     118629.800   (-3.89)
parsec3/swaptions       4150.600     25679.200    (518.69)   19914.800    (379.80)   8577.000     (106.64)   17348.200    (317.97)   -100.000     (0.00)
parsec3/vips            2989801.200  3003285.400  (0.45)     3012055.400  (0.74)     2958369.000  (-1.05)    2970897.800  (-0.63)    2962063.000  (-0.93)
parsec3/x264            3242663.400  3256091.000  (0.41)     3248949.400  (0.19)     3195605.400  (-1.45)    3206571.600  (-1.11)    3219046.333  (-0.73)
splash2x/barnes         1208017.600  1212702.600  (0.39)     1194143.600  (-1.15)    1208450.200  (0.04)     1212607.600  (0.38)     878554.667   (-27.27)
splash2x/fft            9786259.000  9705563.600  (-0.82)    9391006.800  (-4.04)    9967230.600  (1.85)     9657639.400  (-1.31)    10215759.333 (4.39)
splash2x/lu_cb          512130.400   521431.800   (1.82)     513051.400   (0.18)     508534.200   (-0.70)    512643.600   (0.10)     328017.333   (-35.95)
splash2x/lu_ncb         511156.200   526566.400   (3.01)     513230.400   (0.41)     509823.800   (-0.26)    516302.000   (1.01)     418078.333   (-18.21)
splash2x/ocean_cp       3353269.200  3319496.000  (-1.01)    3251575.000  (-3.03)    3379639.800  (0.79)     3326416.600  (-0.80)    3143859.667  (-6.24)
splash2x/ocean_ncp      3905538.200  3914929.600  (0.24)     3877493.200  (-0.72)    7053949.400  (80.61)    4633035.000  (18.63)    3527482.667  (-9.68)
splash2x/radiosity      1462030.400  1468050.000  (0.41)     1454997.600  (-0.48)    1466985.400  (0.34)     1461777.400  (-0.02)    441332.000   (-69.81)
splash2x/radix          2367200.800  2363995.000  (-0.14)    2251124.600  (-4.90)    2417603.800  (2.13)     2317804.000  (-2.09)    2495581.667  (5.42)
splash2x/raytrace       42356.200    56270.200    (32.85)    49419.000    (16.67)    86408.400    (104.00)   50547.600    (19.34)    40341.000    (-4.76)
splash2x/volrend        148631.600   162954.600   (9.64)     153305.200   (3.14)     140089.200   (-5.75)    149831.200   (0.81)     150232.000   (1.08)
splash2x/water_nsquared 39835.800    54268.000    (36.23)    53659.400    (34.70)    41073.600    (3.11)     85322.600    (114.19)   49463.667    (24.17)
splash2x/water_spatial  669746.600   679634.200   (1.48)     667518.600   (-0.33)    664383.800   (-0.80)    684470.200   (2.20)     401946.000   (-39.99)
total                   41472600.000 41520700.000 (0.12)     40796900.000 (-1.63)    44592000.000 (7.52)     41840100.000 (0.89)     38456146.000 (-7.27)

This is also available online.
Summarized analysis is in following slide, 
so you don’t need to read this now.

https://damonitor.github.io/doc/html/v20/vm/damon/eval.html


  

Residential Set Size (RSS)

rss.avg                 orig         rec          (overhead) prec         (overhead) thp          (overhead) ethp         (overhead) prcl         (overhead)
parsec3/blackscholes    587078.800   586930.400   (-0.03)    586355.200   (-0.12)    586147.400   (-0.16)    585203.400   (-0.32)    243110.800   (-58.59)
parsec3/bodytrack       32470.800    32488.400    (0.05)     32351.000    (-0.37)    32433.400    (-0.12)    32429.000    (-0.13)    18804.800    (-42.09)
parsec3/canneal         842418.600   842442.800   (0.00)     844396.000   (0.23)     840756.400   (-0.20)    841242.000   (-0.14)    825296.200   (-2.03)
parsec3/dedup           1180100.000  1179309.200  (-0.07)    1160477.800  (-1.66)    1198789.200  (1.58)     1171802.600  (-0.70)    595531.600   (-49.54)
parsec3/facesim         312056.000   312109.200   (0.02)     312044.400   (-0.00)    318102.200   (1.94)     316239.600   (1.34)     192002.600   (-38.47)
parsec3/ferret          99792.200    99641.800    (-0.15)    99044.800    (-0.75)    102041.800   (2.25)     100854.000   (1.06)     83628.200    (-16.20)
parsec3/fluidanimate    530735.400   530759.000   (0.00)     530865.200   (0.02)     532440.800   (0.32)     522778.600   (-1.50)    433547.400   (-18.31)
parsec3/freqmine        552951.000   552788.000   (-0.03)    552761.800   (-0.03)    556004.400   (0.55)     554001.200   (0.19)     47881.200    (-91.34)
parsec3/raytrace        883966.600   880061.400   (-0.44)    883144.800   (-0.09)    871786.400   (-1.38)    881000.200   (-0.34)    267210.800   (-69.77)
parsec3/streamcluster   110901.600   110863.400   (-0.03)    110893.600   (-0.01)    115612.600   (4.25)     114976.800   (3.67)     109728.600   (-1.06)
parsec3/swaptions       5708.800     5712.400     (0.06)     5681.400     (-0.48)    5720.400     (0.20)     5726.000     (0.30)     -100.000     (0.00)
parsec3/vips            32272.200    32427.400    (0.48)     31959.800    (-0.97)    34177.800    (5.90)     33306.400    (3.20)     28869.000    (-10.55)
parsec3/x264            81878.000    81914.200    (0.04)     81823.600    (-0.07)    83579.400    (2.08)     83236.800    (1.66)     81220.667    (-0.80)
splash2x/barnes         1211917.400  1211328.200  (-0.05)    1212450.400  (0.04)     1221951.000  (0.83)     1218924.600  (0.58)     489430.333   (-59.62)
splash2x/fft            9874359.000  9934912.400  (0.61)     9843789.600  (-0.31)    10204484.600 (3.34)     9980640.400  (1.08)     7003881.000  (-29.07)
splash2x/lu_cb          509066.200   509222.600   (0.03)     509059.600   (-0.00)    509594.600   (0.10)     509479.000   (0.08)     315538.667   (-38.02)
splash2x/lu_ncb         509192.200   508437.000   (-0.15)    509331.000   (0.03)     509606.000   (0.08)     509578.200   (0.08)     412065.667   (-19.07)
splash2x/ocean_cp       3380283.800  3380301.000  (0.00)     3377617.200  (-0.08)    3416531.200  (1.07)     3389845.200  (0.28)     2398084.000  (-29.06)
splash2x/ocean_ncp      3917913.600  3924529.200  (0.17)     3934911.800  (0.43)     7123907.400  (81.83)    4703623.600  (20.05)    2428288.000  (-38.02)
splash2x/radiosity      1467978.600  1468655.400  (0.05)     1467534.000  (-0.03)    1477722.600  (0.66)     1471036.000  (0.21)     148573.333   (-89.88)
splash2x/radix          2413933.400  2408367.600  (-0.23)    2381122.400  (-1.36)    2480169.400  (2.74)     2367118.800  (-1.94)    1848857.000  (-23.41)
splash2x/raytrace       23280.000    23272.800    (-0.03)    23259.000    (-0.09)    28715.600    (23.35)    28354.400    (21.80)    13302.333    (-42.86)
splash2x/volrend        44079.400    44091.600    (0.03)     44022.200    (-0.13)    44547.200    (1.06)     44615.600    (1.22)     29833.000    (-32.32)
splash2x/water_nsquared 29392.800    29425.600    (0.11)     29422.400    (0.10)     30317.800    (3.15)     30602.200    (4.11)     21769.000    (-25.94)
splash2x/water_spatial  658604.400   660276.800   (0.25)     660334.000   (0.26)     660491.000   (0.29)     660636.400   (0.31)     304246.667   (-53.80)
total                   29292400.000 29350400.000 (0.20)     29224634.000 (-0.23)    32985491.000 (12.61)    30157300.000 (2.95)     18340700.000 (-37.39)

This is also available online.
Summarized analysis is in following slide, 
so you don’t need to read this now.

https://damonitor.github.io/doc/html/v20/vm/damon/eval.html


  

Overhead is Modest

● Normally only 0.3 %CPU is used by the monitoring thread

● In total, virtual/physical address monitoring respectively incur

– 1.39% / 1.89% target workload slowdown

– 0.12% / -1.63% memory usage overhead

– 0.20% / -0.23% RSS overhead

– Note the small diff between two, despite of the big target size difference
● 128GB for physical, 6MB-9GB for virtual address space

● The target size doesn’t affect the overhead, as promised



  

● Various visualizations of the monitoring results including

– Heatmap

– Working set size distribution based on size and time

– Number of (adaptively constructed) monitoring target regions

● All cleanly show reasonable access patterns and distributions

Monitoring Results Seems Reasonably Accurate

This is also available online.

https://damonitor.github.io/test/result/visual/v20/rec.heatmap.1.png.html


  

DAMOS: Access-aware THP Hints (ethp)

● ‘ethp’ preserves the speedup while reducing the memory bloat

● Interesting case: splash2x/ocean_ncp

– thp achieves 34.26% speedup but 80.61% system memory waste
(best speedup and worst memory waste among the 25 workloads)

– ethp achieves 7.96% speedup but only 18.63% system memory waste

– Hence, ethp removes 76.90% of memory waster while preserving 
23.23% of speedup for the workload

● Removes 88.16% of thp’s system memory waste in total

● Preserves 88.73% of thp’s speedup in total

● NOTE: ethp is only for proof-of-concept and thus not optimized

– The ethp speedup could be higher if khugepaged promote pages marked 
with MADV_HUGEPAGE more aggressively



  

DAMOS: Proactive Reclamation (prcl)

● ‘prcl’ reduces working sets while making only modest slowdown

● Incurs 8.74% speed down in total

● Reduces 37.39% RSS in total

● Best case: parsec3/freqmine

– Recuces 91.34% of RSS while incurring only 1.58% speed down

● NOTE: prcl is only for proof of concept and thus not optimized

– Paging out 10sec inactive pages might be too aggressive
(Google’s proactive reclamation waits 2 minutes)

– With faster swap devices, the speed down could further reduced



  

Evaluation Wrap-up: DAMON Is...

● Lightweight

● Accurate

● Useful for MM optimizations



  

Overview

● Motivation

● DAMON

● Live Demo

● Evaluation

● Plans

● Conclusion



  

History of DAMON Project

● 2019.03: A prototype research project, DAPTRACE kicked-off

● 2019.09: Renamed into DAMON, Presented at Kernel Summit’2019

● 2019.12: The development resumed in Amazon

● 2020.01: Posted the RFC v1 patchset

● The work was also introduced in several conferences and medias

– Kernel Summit’19, MIDDLEWARE Industry’19, Phoronix, LWN,
Google Linux Kernel Exchange’20, and Kernel Summit’20

https://github.com/daptrace/daptrace
https://linuxplumbersconf.org/event/4/contributions/548/
https://linuxplumbersconf.org/event/4/contributions/548/
https://dl.acm.org/citation.cfm?id=3368125
https://www.phoronix.com/scan.php?page=news_item&px=Amazon-Linux-DAMON-RFC
https://lwn.net/Articles/812707/
https://linuxplumbersconf.org/event/7/contributions/659/


  

Now: DAMON patchsets series

● V20 DAMON patchset

– The core of DAMON (framework part)

– Provide a DAMON primitives for the virtual address spaces

● Two RFC patchsets for future changes are in below order

– Only to show how DAMON could be evolved

– Might not ready-to-be-merged level quality

– RFC v14 of DAMON-based Operation Schemes (DAMOS)
● Support only virtual addresses

– RFC v7 of Physical Memory Address Space Support
● Implement another DAMON primitives for the physical address space

● Support only mapped LRU pages

https://lore.kernel.org/linux-mm/20200817105137.19296-1-sjpark@amazon.com/
https://lore.kernel.org/linux-mm/20200804142430.15384-1-sjpark@amazon.com/
https://lore.kernel.org/linux-mm/20200818072501.30396-1-sjpark@amazon.com/


  

Before DAMON

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

perf



  

DAMON Patchset 1-4/15

DAMON

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

perf

Framework



  

DAMON Patchset 5-6/15

DAMON

For vaddr

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

perf

Framework

Low level primitives



  

DAMON Patchset 7/15

DAMON

For vaddr

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

Data Accesses
Recording

perf

Kernel space applications

Framework

Low level primitives



  

DAMON Patchset 8-10/15

DAMON

For vaddr

debugfstracepoints

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

Data Accesses
Recording

perf

User space interfaces

Kernel space applications

Framework

Low level primitives



  

DAMON Patchset 11/15

DAMON

For vaddr

debugfs

DAMO

tracepoints

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

Data Accesses
Recording

perf User space tools

User space interfaces

Kernel space applications

Framework

Low level primitives

● 12-15 are for documentations and tests



  

DAMOS Patchset

DAMON

For vaddr

debugfs

DAMO

tracepoints

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

DAMON-based
Operation Schemes

Data Accesses
Recording

perf User space tools

User space interfaces

Kernel space applications

Framework

Low level primitives



  

Physical Address Support Patchset

DAMON

For vaddr For phys addr

debugfs

DAMO

tracepoints

PTEvma rmap

ker
ne
l 
sp
ac
e

Use
r

sp
ac
e

DAMON-based
Operation Schemes

Data Accesses
Recording

perf User space tools

User space interfaces

Kernel space applications

Framework

Low level primitives



  

TODOs

● Make current DAMON patchsets series merged in the mainline

● Support more address spaces

– Cgroup, cached pages, specific file-backed pages, swap slots, …

– Physical address support from DAMOS

● Improve the user space interface

– Multiple contexts, CPU usage charge, …

● Optimize for special use-cases

– Page granularity monitoring, accessed-or-not monitoring, ...

● DAMON-based MM Optimizations

– Page reclaim, THP, compaction, NUMA balancing, …



  

Need Your Opinions

● Are there tasks you want to…

– Put in the current DAMON patchsets before those be merged in,

– Put in the future DAMON patchsets, or

– Assign higher/lower prioritize?



  

VOTE: What Task Should Have Highest Priority?

A. Make current DAMON patchsets series merged in the mainline

B. Support more address spaces

– Cgroup, cached pages, specific file-backed pages, swap slots, …

– Physical address support from DAMOS

C. Improve the user space interface

– Multiple contexts, CPU usage charge, …

D. Optimize for special use-cases

– Page granularity monitoring, accessed-or-not monitoring, ...

E. DAMON-based MM Optimizations

– Page reclaim, THP, compaction, NUMA balancing, …

F. Something other? Reply to the patchset, please

https://lore.kernel.org/linux-mm/20200817105137.19296-1-sjpark@amazon.com/


  

Summary

● DAMON is a kernel subsystem providing data access monitoring with

– Reasonable best-effort accuracy

– Lightweight overhead and scalable control of it

● Both kernel space and user space could use DAMON for

– Analysis, MM optimizations, and fun

● Evaluations with 25 realistic workloads say the benefit could be big

● The patchset and two RFC patchsets for future features are available

– V20 DAMON, RFC v14 DAMOS, RFC v7 Physical address support

– Review, please!

https://lore.kernel.org/linux-mm/20200817105137.19296-1-sjpark@amazon.com/
https://lore.kernel.org/linux-mm/20200804142430.15384-1-sjpark@amazon.com/
https://lore.kernel.org/linux-mm/20200818072501.30396-1-sjpark@amazon.com/


  

More Resources: https://damonitor.github.io

● Source Tree: https://github.com/sjp38/linux/tree/damon/next

● Patchsets:
V20 DAMON, RFC v14 DAMOS, RFC v7 Physical address support

● Document: https://damonitor.github.io/doc/html/next/index.html

● Visualized monitoring results

– https://damonitor.github.io/test/result/visual/next/rec.heatmap.1.png.html

– https://damonitor.github.io/test/result/visual/next/rec.wss_sz.png.html

– https://damonitor.github.io/test/result/visual/next/rec.wss_time.png.html

● Hidden index page: https://damonitor.github.io/_index

https://damonitor.github.io/
https://github.com/sjp38/linux/tree/damon/next
https://lore.kernel.org/linux-mm/20200817105137.19296-1-sjpark@amazon.com/
https://lore.kernel.org/linux-mm/20200804142430.15384-1-sjpark@amazon.com/
https://lore.kernel.org/linux-mm/20200818072501.30396-1-sjpark@amazon.com/
https://damonitor.github.io/doc/html/next/index.html
https://damonitor.github.io/test/result/visual/next/rec.heatmap.1.png.html
https://damonitor.github.io/test/result/visual/next/rec.wss_sz.png.html
https://damonitor.github.io/test/result/visual/next/rec.wss_time.png.html
https://damonitor.github.io/_index


  

Questions?

https://kids.nationalgeographic.com/content/dam/kids/photos/animals/Birds/A-G/adelie-penguin-jumping-ocean.ngsversion.1396530997321.adapt.1900.1.jpg

https://kids.nationalgeographic.com/content/dam/kids/photos/animals/Birds/A-G/adelie-penguin-jumping-ocean.ngsversion.1396530997321.adapt.1900.1.jpg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

