
Extensible Syscalls

Christian Brauner (Canonical)
<christian.brauner@ubuntu.com>

Aleksa Sarai (SUSE)
<cyphar@cyphar.com>

Groundhog Day

- We need an agreement on how we design future APIs.
- Same argument with each new API proposal.
- Either people want ...

1. to have a full-blown multiplexer that is so generic that ideally it
spans multiple APIs at once; or

2. individual syscalls for each operation.
- We’ve burned userspace and ourselves with both of them already.
- There are no good guidelines to follow for developers.

Groundhog Day

- We should have documented stronger requirements for newer syscalls.
- A baseline of extensibility for new syscalls (to avoid the

renameat2/readlinkat/dup/accept/… problem).
- Note that we’re not proposing that using structs in syscalls is the new

baseline for extensibility. The baseline of extensibility should be the
requirement of a flag argument.

- Arguably this is the case today, though there are quite a few
syscalls without a flag argument that should have one…

Alternative ways of dealing with extensions

1. Always require a new syscall.
- Costly for userspace to adapt their codebases to new syscalls all the time. This is

especially true for shared libraries (doubly so with seccomp).
- That’s the other extreme of having full-blown ioctl-style multiplexers.
- 64-bit flag arguments.

2. Add a new flag and have a fun time with va_arg (fcntl-style).
- Glibc has had “fun” with this (O_TMPFILE), and it’s pretty damn ugly.
- 64-bit flag arguments.

3. Fixed-size struct with “enough” padding.
- We are bad at predicting the future.
- Why not go the extra step and not worry about having good predictions?

4. Buy a time machine and skip extensions.
- Can I have one too, please?
- 128-bit flag arguments (probably).

Extensible structs - a modest compromise

- Introduction of new syscalls is a pain for userspace.
- There should be a compromise between having a dedicated syscall for

everything and stuffing everything into a single syscall.
- Extensible structs are a modest proposal one step further from flag-based

extensibility but far away from ioctl madness:

 creat(2) -- open(2) -- openat2(2) -- prctl(2) -- ioctl(2)

Why add more fuel to the fire?

- Support APIs that can be expected to grow beyond just adding flags.
- Need a better compromise between maintainability and simplicity.
- Alternatives are inconvenient (there are better uses for time travel).
- Better to deal with this fire here and now rather than having the same

(derailing) argument on every patchset, which discourages new contributors
and leads to inconsistent APIs.

- And we can document the conclusions of this discussion to avoid
bringing this issue up again.

Extensible structs

- New fields always appended.
- Zero value in new fields means

“old behavior”
- (ksize == usize) Copy the struct

verbatim.
- (ksize > usize) Copy usize bytes,

zero-fill trailing bytes.
- (ksize < usize) Copy ksize bytes,

check if trailing bytes are zeroed. If
non-zero bytes are present, return
-E2BIG.

- Dedicated kernel helper called
copy_struct_from_user().

struct open_how how = {
.flags = O_RDONLY,
.resolve = RESOLVE_IN_ROOT,
.newfield = SOME_NEW_FLAG,

};

int fd = openat2(dfd, path,
 &how, sizeof(how));
/* -E2BIG if .newfield not supported. */
/* -EINVAL if O_RDONLY not supported. */
if (fd < 0)

return -1;

int openat2(int fd, const char *path,
 struct open_how *how, size_t usize);

No more multiplexers

- Extensible structs are _not_ multiplexers. They especially need to be
discerned from multiplexers with polymorph types passed through a void
pointer or a union or a long...

- For example, bpf(2) is a multiplexer making use of extensible structs
not an extensible struct based syscall.

- Most people don’t want to introduce any new polymorph multiplexers.
That seems almost universally agreed upon.

- glibc is explicitly advising against the introduction of new multiplexers
as they are hard to deal with in shared libraries.

#

va_arg … more like bad_arg

- va_arg style extension (as used by multiplexers like fcntl(2) and prctl(2))
deserve explicit mention:

- Ugly to use due to the need to indicate which arguments should be
ignored (either through flags or command enum).

- Are limited to 5-6 arguments depending on architecture.
- Glibc has to call va_arg(3) unconditionally because they don’t know if a

future command will require more arguments (the upshot is that they
pass garbage from the stack and hope the kernel ignores it and there’s
enough data in the stack).

The “cr*p insertion vector” argument

- Someone raised the concern that extensible structs can be abused to “sneak
in” problematic features without sufficient review, while being forced to
introduce a new syscall in order to support the same new feature would
cause a more thorough review.

The “cr*p insertion vector” argument

- There are at least four counter-points:
1. For a start, the features that prompted that reaction were all caught

during review so there’s doubt that this is even a real problem.
Especially for high-profile subsystems such as the vfs and core kernel.

2. To the extent that this is a problem, it is no more of a problem than
with flags and other extension designs -- subsystem maintainers should
already be reviewing ABI changes enough to avoid this. All this design
adds is the ability to easily add new fields to structs…

The “cr*p insertion vector” argument

3. It is debatable that syscalls prompt a more thorough review. We have a
bunch of syscalls with very questionable APIs (keyctl(2), dup(2), etc.).
There’s even an LWN article about it.

4. All of the existing “questionable features” proposed could be applied
to flags (O_MAYEXEC was originally an openat(2) patch). Is the ability to
easily add new fields to existing struct arguments really the only thing
stopping questionable features from being snuck in?

https://lwn.net/Articles/585415/

Checking for supported features

- Userspace needs to know what features are supported in a given syscall.
This is usually done by having a (painful) trial and error approach.

- Userspace has to write elaborate cosplay scenarios where we have to
exercise the feature to see if it works without borking the system.

- Emulation makes this worse because emulated syscalls act strange.
- This is maybe fine for long-running system daemons but it certainly

isn’t workable for shared libraries or shorter-running programs (nor for
our sanity -- see the LXD code for this).

- It should be possible to do this in a much simpler way -- and thanks to the
design of extensible struct argument syscalls we can do it in a manner which
is backward- and forward-compatible.

https://github.com/lxc/lxd/blob/master/lxd/main_checkfeature.go

Checking for supported features

- Here’s an initial proposal.
- Already discussed on libc-alpha

mailing list in the context of
clone3(2) and more broadly at
Linux.conf.au 2020.

- Syscall is no-op (returns some errno)
and “returns” version of struct where:

- All valid flag bits in flag fields
are set.

- All non-flag fields are filled with
0xFF. (Could be implemented as
way of describing limits for
fields.)

- Userspace then looks at the final
struct to determine feature support.

struct clone_args arg = {
 // (1 << 63)
.flags = SUPPORTED_BITS

};
int ret = clone3(&arg, sizeof(arg));
assert(ret < 0); // always fails
if (errno != E_SUPPORTED_BITS_NOOP) {

// kernel without feature check
if (errno == EINVAL)

args = CLONE3_INIT_VERSION;
else

return -1;
}

bool abc_supported = args.flags & CLONE_ABC;
bool xyz_supported = args.xyz != 0;

https://www.youtube.com/watch?v=ggD-eb3yPVs
https://www.youtube.com/watch?v=ggD-eb3yPVs

Checking for supported features

- (ksize == usize) Copy the struct
verbatim.

- (ksize > usize) Copy usize bytes, any
trailing bytes on the kernel side are
ignored.

- (ksize < usize) Copy ksize bytes,
zero-fill the trailing (usize - ksize)
bytes (unknown extensions have their
zero value defined as the “old
behaviour”).

- New copy_struct_to_user() helper.

struct clone_args arg = {
 // (1 << 63)
.flags = SUPPORTED_BITS

};
int ret = clone3(&arg, sizeof(arg));
assert(ret < 0); // always fails
if (errno != E_SUPPORTED_BITS_NOOP) {

// kernel without feature check
if (errno == EINVAL)

args = CLONE3_INIT_VERSION;
else

return -1;
}

bool abc_supported = args.flags & CLONE_ABC;
bool xyz_supported = args.xyz != 0;

Making this part of the kernel docs

- Documentation/process/adding-syscalls.rst is of questionable currency.
- Our first attempt to update it went largely unnoticed.

- Proposal to update adding-syscalls.rst:
- Formalise how extensible structs are intended to be used.

- perf_event_open is currently mentioned
- … but clone3/openat2 are more modern.

- Mention new variable argument or type polymorph multiplexers are
not encouraged.

- Mention syscalls with a flag argument for extensibility should use
unsigned int.

- Describe common issues the glibc folks have (such as pointer types in
structs, et al) as well as “C annoyances” such as explicit padding and
aligned fields.

https://lore.kernel.org/lkml/20191002151437.5367-1-christian.brauner@ubuntu.com/

Extensible Syscalls

Christian Brauner (Canonical)
<christian.brauner@ubuntu.com>

Aleksa Sarai (SUSE)
<cyphar@cyphar.com>

va_arg … more like really_bad_arg

- va_arg style multiplexers cause even more issues for glibc in general:
- Different argument types cause confusion.
- size_t and long cannot be differentiated and this causes issues on

x32-compat due to differences between the kernel and C calling
conventions (kernel requires zero or sign extension).

- Changing a type of an argument for a single variant requires us to port
all users of the syscall to a new version (see futex(2) and 64-bit time_t
-- all futex users needed to be ported even though only a few futex
operations actually use time_t).

