
Morello and the challenges of a
capability‐based ABI

Linux Plumbers Conference

Kevin Brodsky

24 August 2020

© 2020 Arm Limited



A world of capabilities

2 © 2020 Arm Limited



CHERI and Morello

CHERI: a hardware architecture, part of a research project led by Cambridge University

Based on the concept of hardware capabilities, added on top of a conventional ISA
Aim: spatial safety, but also temporal safety
Has been implemented on top of MIPS and RISC‐V

Morello: a research program, led by Arm, funded by the UK government
Also a prototype architecture, extending Armv8 with CHERI concepts
Also a quad‐core prototype board implementing the Morello arch
→Will allow for realistic performance measurements

N Introduction to the Morello program: Richard Grisenthwaite on Digital Security by Design (slides)

3 © 2020 Arm Limited

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://vimeo.com/366246134/fa067a2689
https://www.slideshare.net/KTNUK/digital-security-by-design-technology-platform-richard-grisenthwaite-arm/1


Quick anatomy of a capability in Morello

128 bits of “regular” data

64‐bit value (address)
Bounds (compressed)
Permissions (Load, Store, Execute, …)
Object type

→ Can all be set directly

1 “magic” bit
Unforgeable validity tag

In registers: next to 128‐bit data
In memory: stored separately

→ Cannot be set by software*
→ Cleared by any invalid operation

Note: “the tag of capability C is set” == “C is valid ”

4 © 2020 Arm Limited



The rules of the game

Validation Dereferencing a capability pointer only succeeds if:
Tag is set
Access within bounds
Permissions allow it
Not sealed

Provenance Only specific instructions may construct valid capabilities
Arbitrary writes to memory zero the corresponding tag(s)

Monotonicity Bounds and permissions can only be restricted, not extended

N Excellent overview: An Introduction to CHERI
N A proposal for a provenance‐aware model in C2x: N2362

5 © 2020 Arm Limited

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf


Capabilities in practice

6 © 2020 Arm Limited



C language mappings

Hybrid‐capability

Capabilities as a C extension
__capability pointer annotation

For instance: char* __capability

Explicit instantiation of capabilities
Often derived from global capabilities

Pure‐capability

Capabilities embedded in C

All pointers are capabilities
Automatic instantation of capabilities

Modified memory allocators
Stack management
Extended relocations

+ Compiler and runtime support for manipulating and preserving capabilities

7 © 2020 Arm Limited



Hybrid/Pure‐cap: typical usage

Hybrid‐cap: mostly useful for specialized code (bits of kernel, libc, etc.)
Capabilities must be propagated explicitly (__capability everywhere☹)
Library functions do not take capabilities!
But: less disruptive at runtime (contained capability checks)

Pure‐cap: everything else (all “normal” software)
Natural model for a capability architecture
All the benefits of capability checks (bounds, permissions, monotonicity, …)
No or very few code changes required
But: (some) runtime cost, bugs to fix!

In low‐level software, hybrid‐cap allows for controlled usage before switching to pure‐cap

8 © 2020 Arm Limited



Lightweight compartmentalization

Isolation of software components through capabilities
Same address space, but access constrained by capabilities

By default: a compartment can only access its own memory
Can be extended by passing tightly bounded capabilities

More lightweight and scalable than processes, cheaper IPC
Typical use‐case: isolation between browser tabs

Many possible implementations and usage models…

Strong use‐case for the pure‐cap model

N Much more about this: Hardware support for compartmentalisation
N Also: CHERI: A Hybrid Capability‐System Architecture for Scalable Software Compartmentalization

9 © 2020 Arm Limited

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-887.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-oakland2015-cheri-compartmentalization.pdf


The pure‐capability ABI

10 © 2020 Arm Limited



Holy pointers

sizeof(void*) == 16 and unforgeable tag attached

Completely new ABI (think 32‐bit → 64‐bit transition)

Transparent for most software
Main exception: low‐level software

C runtime
Memory allocators
JITs
In general: code making assumption about pointers

11 © 2020 Arm Limited



Pain points
Pointers must be handled with care

Big enough + aligned enough storage

Pointers cannot be stored in arbitrary integers: only (u)intptr_t is valid

Bitwise operations can be tricky
In general: address≠ pointer

Still 64‐bit addresses!
intptr_t has a 64‐bit value range, but is 128‐bit large

Certain patterns around memory allocation can be problematic (especially realloc())

N Everything about pure‐cap: CHERI C/C++ Programming Guide

12 © 2020 Arm Limited

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf


Here be dragons:
supporting the pure‐cap ABI in userspace

13 © 2020 Arm Limited



The goal
Support userspace programs built in the pure‐cap ABI

Use the right types: all pointers at the kernel‐user interface are capabilities

Honor capability metadata: access memory “as if” dereferencing the capability

Create capabilities for userspace with appropriate bounds and permissions

Retain the base 64‐bit ABI (32‐bit not required)

→ Has been achieved on CheriBSD!
[CheriBSD: adaptation of FreeBSD for CHERI]

N More on pure‐cap in CheriBSD: CheriABI paper

14 © 2020 Arm Limited

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf


Pointers in the kernel‐user ABI

Where they appear:
Syscalls (arguments, struct members)
A few other places (initial stack layout, signal handlers)

How they are used:
Most common: user specifying where data should be read/written

Data accessed via user mappings using copy_to_user() and friends (e.g. read())
Data accessed via kernel mappings using get_user_pages() (e.g. readv())

Less common: kernel providing userspace with a pointer to some object
mmap() and friends
argv

Rare: arbitrary user data, stored by the kernel without processing
For instance epoll_ctl() and epoll_wait()

15 © 2020 Arm Limited



User pointers as capabilities

Good: all user pointers are annotated with __user in Linux

Hope for turning void __user * into a capability… with caveats

Need a mechanism for enforcing capability bounds / permissions

16 © 2020 Arm Limited



A long issue

long is everywhere in Linux

Strong assumption that long is big enough to hold any scalar type…
…therefore can be used to represent a lot of things, in particular:

Addresses (fine) and/or pointers (not fine!)
Catch‐all type (especially in syscalls)

Really bad for multiplexed syscalls: ptrace(), fcntl(), ioctl()

Sounds overwhelming?

17 © 2020 Arm Limited



Avoiding dragons: a userspace shim

18 © 2020 Arm Limited



Userspace shim: principles
A stepping stone: userspace shim library

Lives between libc and the kernel

Checks input capabilities (“as‐if”
dereferenced by the kernel)

Two‐way ABI conversion

Unmodified kernel‐user ABI

getcwd(c_ptr, size)

check(c_ptr, size)
ptr = address(c_ptr)

sys_getcwd(ptr, size)

…

copy_to_user(ptr, cwd, len)

SHIM

USERSPACE

KERNEL

19 © 2020 Arm Limited



Userspace shim: limitations

Does not enforce any security boundary (raw 64‐bit syscalls still available)
Requires explicit checking of capabilities (extra cost)

Checking C‐strings is inherently racy

Needs to know whenever pointers are passed — not easy with multiplexed syscalls
ioctl almost impossible to handle reliably:
$ git grep '\.unlocked_ioctl'| wc −l
593
+ out‐of‐tree drivers!

Complications whenever the kernel stores user pointers

20 © 2020 Arm Limited



Getting bolder: a kernel shim

21 © 2020 Arm Limited



An arch‐specific in‐kernel shim

New kernel‐user ABI: pure‐cap

Non‐invasive shim in arch code

Security boundary enforced

Pure‐cap as a secondary ABI(?)

→ Attempted on arm64
→ Experimental implementation in CheriBSD

getcwd(c_ptr, size)

check(c_ptr, size)
ptr = address(c_ptr)

sys_getcwd(ptr, size)

…

copy_to_user(ptr, cwd, len)

SHIM

USERSPACE

KERNEL

22 © 2020 Arm Limited



Kernel shim: limitations

Same as the userspace shim (security aside)
Somewhat easier to implement if making changes to generic code

Only existing mechanism for a secondary ABI: COMPAT
Typical situation: void __user *argp = compat_ptr(arg);
Major obstacle: COMPAT pointers must fit in void __user *!

Would have to define a new mechanism…

23 © 2020 Arm Limited



Fighting dragons:
propagate the capabilities

24 © 2020 Arm Limited



So long…

All user pointers in the kernel become capabilities

Capabilities propagated down to the point of use
(typically uaccess routines)
New integer type to represent user pointers:
intuserptr_t?

Note: intmax_t not the right type: “[…] integer type capable
of representing any value of any signed integer type”

longmust be replaced whenever it may represent a
user pointer

Clearly an invasive approach

25 © 2020 Arm Limited



User ABIs

Pure‐cap must become the primary ABI

64‐bit ABI becomes COMPAT
Cleaner approach, especially for uaccess

User memory always accessed via capabilities, regardless of the task’s ABI

26 © 2020 Arm Limited



Option 1: hybrid‐cap kernel

Turn void __user * into a capability
__user on the wrong side of *☹
void __capability * deprecated, but works in most cases
#define __user __capability worth a try!

intcap_t available for storing capabilities
Potential issue with uapi headers being built in different ABIs (hybrid‐cap kernel, pure‐cap
userspace)

All pointers should already be annotated with __user, but may not be enough

→ Current approach used by CheriBSD

27 © 2020 Arm Limited



Option 2: pure‐cap kernel

The “proper” way

Requires eradicating long everywhere it may represent any pointer

Comes with all the benefits of pure‐cap code…

…but also the usual difficulties of porting low‐level code to CHERI

Potential performance impact

→ Experimental implementation in CheriBSD

28 © 2020 Arm Limited



Common issues

Explicit checking still needed for indirect accesses (get_user_pages())

memcpy() should not always copy tags
mmap() interface unfriendly with capabilities

mprotect() does not return a pointer
→ which capability permissions should mmap() return?

N More on mmap()’s flaws: Is it time to replace mmap? (slides)

29 © 2020 Arm Limited

https://youtu.be/nRJWS9_cEUU
https://people.freebsd.org/~brooks/talks/bsdcan2018-mmap/is-it-time-to-replace-mmap.pdf


Looking forward

30 © 2020 Arm Limited



Overview

2 main approaches for supporting pure‐cap in userspace:

Shim Wrapping around 64‐bit syscalls: non‐invasive, but fragile

Propagate Making all user pointers capabilities: “proper” approach but invasive

Supporting pure‐cap on Linux: painful in one way or another

But: has been done on FreeBSD!

31 © 2020 Arm Limited



Morello project status

First release in October, watch https://www.morello-project.org/
“Core” kernel support for Morello, unmodified ABI
Userspace shim library
Minimal Android with limited pure‐cap support

Morello support in CheriBSD to be published soon
Starting now: new kernel‐user ABI definition, investigation into the “propagate” approach

Many aspects of the ABI yet to be properly defined

N More info on the roadmap: Morello Software and Toolchain Work in Arm (slides)

32 © 2020 Arm Limited

https://www.morello-project.org/
https://vimeo.com/399116587/d46f5368f9
https://www.slideshare.net/KTNUK/morello-software-and-toolchain-work-in-arm-mark-nicholson-arm


Food for thought

Wider efforts in Linux that would be beneficial:

Proper multi‐ABI support

Start the long war

void __user * → void * __user

33 © 2020 Arm Limited



Resources

CHERI landing page

An Introduction to CHERI (technical report)

CHERI C/C++ Programming Guide (technical report)

CheriABI: Enforcing Valid Pointer Provenance… (paper)
Compartmentalization:

Hardware support for compartmentalisation (technical report)
CHERI: A Hybrid Capability‐System Architecture for Scalable Software Compartmentalization (paper)

Morello program:
Richard Grisenthwaite’s talk at the Digital Security by Design workshop (slides)
Mark Nicholson’s talk “Morello Software and Toolchain Work in Arm” (slides)

Brooks Davis’s talk “Is it time to replace mmap?” (slides)

34 © 2020 Arm Limited

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-887.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-oakland2015-cheri-compartmentalization.pdf
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://vimeo.com/366246134/fa067a2689
https://www.slideshare.net/KTNUK/digital-security-by-design-technology-platform-richard-grisenthwaite-arm/1
https://vimeo.com/399116587/d46f5368f9
https://www.slideshare.net/KTNUK/morello-software-and-toolchain-work-in-arm-mark-nicholson-arm
https://youtu.be/nRJWS9_cEUU
https://people.freebsd.org/~brooks/talks/bsdcan2018-mmap/is-it-time-to-replace-mmap.pdf


Contacts

CHERI community discussion mailing list (appropriate for generic Morello discussions as well)

Or just drop me an email: <first>.<last><at>arm.com☺

35 © 2020 Arm Limited

https://lists.cam.ac.uk/mailman/listinfo/cl-cheri-discuss


Thank You
Danke
Merci
谢谢

ありがとう
Gracias
Kiitos

감사합니다
धन्यवाद
شكرًا

ধনযবাদ
תודה

© 2020 Arm Limited



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 
the US and/or elsewhere.  All rights reserved.  All other marks 

featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited


	A world of capabilities
	Capabilities in practice
	The pure-capability ABI
	Here be dragons: supporting the pure-cap ABI in userspace
	Avoiding dragons: a userspace shim
	Getting bolder: a kernel shim
	Fighting dragons: propagate the capabilities
	Looking forward

