
Write once, herd everywhere
Boqun Feng (Microsoft)

Agenda

• LKMM and Herdtools

• Litmus translation

• Current status and future work

LKMM and herdtools

• The core of LKMM is linux-kernel.cat file which defines the model in
the “cat” language of herdtools.

• Herdtools: A memory model simulator.

• Users may write simple, single events, axiomatic models of their own

• Using cat file, e.g. linux-kernel.cat

• and run litmus tests on top of their model.

• Like tools/memory-model/litmuts

How herd works

HERD

1: C MP+pooncerelease+poacquireonce
2: { x = 0; y = 0 }
3:
4: P0(int *x, int *y)
5: {
6: WRITE_ONCE(*x, 1);
7: smp_store_release(y, 1);
8: }
9:
10: P1(int *x, int *y)
11: {
12: int r0;
13: int r1;
14:
15: r0 = smp_load_acquire(y);
16: r1 = READ_ONCE(*x);
17: }
18:
19: exists (1:r0=1 /\ 1:r1=0)

...
acyclic hb as happens-before
...

...
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r0=1 /\ 1:r1=0)

.cat file

Litmus test

result

How herd works: step 1, generate “events”

1: C MP+pooncerelease+poacquireonce
2: { x = 0; y = 0 }
3:
4: P0(int *x, int *y)
5: {
6: WRITE_ONCE(*x, 1);
7: smp_store_release(y, 1);
8: }
9:
10: P1(int *x, int *y)
11: {
12: int r0;
13: int r1;
14:
15: r0 = smp_load_acquire(y);
16: r1 = READ_ONCE(*x);
17: }
18:
19: exists (1:r0=1 /\ 1:r1=0)

w[once] x 1

w[rel] y 1

r[acq] r0 y

r[once] r1 x

w[] x 0

w[] y 0

How herd works: step 2, enumerate “com”

w[once] x 1

w[rel] y 1

r[acq] r0 y

r[once] r1 x

w[] x 0

w[] y 0

w[once] x 1

w[rel] y 1

r[acq] r0 y

r[once] r1 x

w[] x 0 w[] y 0

rf

co co

rf

How herd works: step 3, check “cycles”

w[once] x 1

w[rel] y 1

r[acq] r0 y

r[once] r1 x

rffr

po-rel

• acyclic hb as happen-before
• prop & int is hb

• fre ; cumul-fence; rfe is prop
• po-rel is cumul-fence

• ppo is hb
• fence is ppo

• acq-po is fence
• (fre; po-rel; rfe) & int is hb
• acq-po is hb

• hb* form cycle in this execution
candidate

acq-po

C Litmus tests

• tools/memory-model/litmus-tests/*

• Documentation/litmus-tests/*

• https://github.com/paulmckrcu/litmus

https://github.com/paulmckrcu/litmus

Asm litmus tests

AArch64 MP+pooncerelease+poacquireonce

{1:X0=y; 1:X2=x; 0:X1=y; 0:X0=x;}

P0 | P1 ;
MOV X2,#1 | lbl3: LDAR X1,[X0] ;
lbl1: STR X2,[X0] | lbl4: LDR X3,[X2] ;
MOV X2,#1 | ;
lbl2: STLR X2,[X1] | ;

exists (1:X1=1 /\ 1:X3=0)

...
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r0=1 /\ 1:r1=0)

LKMM and herdtools

• With the .cat file of LKMM, developers can use C litmus to understand
the model provided by Linux kernel and the semantics of the modeled
synchronized primitives (*_ONCE(), smp_*_{store,release}, atomic
APIs, etc).

• But how can we know the primitives are implemented correctly?

Translate Litmus tests from C to asm

• Get more litmus tests for free ;-)

• Verify the Linux Kernel Model by comparing the results.

• Tools:
• jingle and gen_theme

Translate litmus tests using jingle

jingle

.theme
file

1: C MP+pooncerelease+poacquireonce
2: { x = 0; y = 0 }
3:
4: P0(int *x, int *y)
5: {
6: WRITE_ONCE(*x, 1);
7: smp_store_release(y, 1);
8: }
9:
10: P1(int *x, int *y)
11: {
12: int r0;
13: int r1;
14:
15: r0 = smp_load_acquire(y);
16: r1 = READ_ONCE(*x);
17: }
18:
19: exists (1:r0=1 /\ 1:r1=0)

AArch64 MP+pooncerelease+poacquireonce

{1:X0=y; 1:X2=x; 0:X1=y; 0:X0=x;}

P0 | P1 ;
MOV X2,#1 | lbl3: LDAR X1,[X0] ;
lbl1: STR X2,[X0] | lbl4: LDR X3,[X2] ;
MOV X2,#1 | ;
lbl2: STLR X2,[X1] | ;

exists (1:X1=1 /\ 1:X3=0)

Input Litmus test

Output Litmus test

An example of theme file

...

"%x = READ_ONCE(*%y);" -> "load:LDR %x,[%y]"

"WRITE_ONCE(*%y, constvar:c);" -> "MOV %tmp,&c;

STR %tmp,[%y]"

...

"%x = smp_load_acquire(%y);" -> "load:LDAR %x,[%y]"

"smp_store_release(%y, constvar:c);" -> "MOV %tmp,&c;

STLR %tmp,[%y]"

Ideal approach

• Theme files are maintained by arch maintainers

• Translate and check every time when
• LKMM changed (adding new api, changing api semantics)

• Implementation changed (include adding new architecture support)

• But rules (described in .theme file) of translation might be a lot

Generate .theme files

gen_theme

.map file

.call file

.theme
file

.call file is arch-independent

• Similar as include/atomic.h

...
"%x = smp_load_acquire(%y);" -> "@acquire %x = READ_ONCE(*%y);“
"smp_store_release(%y, %x);" -> "@release WRITE_ONCE(*%y, %x);“
"%x = rcu_dereference(*%y);" -> "@id %x = READ_ONCE(*%y);”
"%r = xchg(%x, constvar:c);" -> "@full %r = xchg(%x, constvar:c);“
...

.map file is per arch

• Similar as asm/atomic.h

...
"%x = READ_ONCE(*%y);" -> "load:LDR %x,[%y]"
"WRITE_ONCE(*%y, constvar:c);" -> "MOV %tmp,&c;

store:STR %tmp,[%y]“
...
"release" : "store:STR" -> "store:STLR"
"release" : "store:STXR" -> "store:STLXR"
"release" : "" -> "DMB ISH;“
"full" : "acquire | release | full_on_acq_rel“

...

Current Status

• Support Linux2ARM64 and Linux2PPC translation

• Atomic APIs are partially supported

• RCU APIs are not supported

• Spinlocks are translated as simple spinlock implemention
• Herd check results may vary between C version and asm version.

Future work

• Support translation for more APIs

• Propose the .call and .map files to Linux mainline

• Try another approach if the previous doesn’t work

Demos

• Thanks!

