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2 years ago

 Enabled by default on cgroup v1 and cgroup v2
 Charging/uncharging is performed by the page allocator
 Every charged page keeps a pointer (page->mem_cgroup) and a reference to 

the memory cgroup
 Slab (SLAB/SLUB) infrastructure is replicated for each memory cgroup
 Socket memory is an exception



Dying cgroups problem

 Dying cgroup is a cgroup deleted by a user but pinned in the memory
 Memory cgroup is a large objects (xxx KB or x MB)
 The number of dying cgroups grew everywhere



Vmalloc-based kernel stacks

 2 stacks are cached per CPU
 Charging on allocation, uncharging on freeing
 …
 Or maybe not?
 …
 Charging on clone(), uncharging on exit()



VFS cache

 Cgroups are created and destroyed
 But some inodes and dentries stay
 …
 pinning original cgroups
 How to release a memory cgroup without releasing all charged objects?



Slab reparenting

 Recharge slab pages to the parent cgroup
 How to do it efficiently?
 …
 page->mem_cgroup => slab_cache.memcg_params.memcg
 All charges and statistics are fully recursive
 slab_cache.memcg_params.memcg = parent_memcg
 Merged into 5.3



Hm...  400k active task_structs?



Slab utilization problem

 /proc/slab_info shows high 9x%, but it’s not true
 If CONFIG_SLUB_CPU_PARTIAL is on
 Real numbers were 15% to 65%
 …
 So is the memory overhead 0.2%?
 cgroup.memory=nokmem saves ~50% of slab memory



New slab controller

 Shared usage of slab caches and slab pages
 Per-object tracking of slab objects
 Reparenting



External memcg ownership data

#ifdef CONFIG_MEMCG

struct page {

...

union {

struct mem_cgroup *mem_cgroup;

struct obj_cgroup **obj_cgroups;

};

#endif



Byte-sized charging API & reparenting

struct obj_cgroup *get_obj_cgroup_from_current(void);

void obj_cgroup_get(struct obj_cgroup *objcg);

void obj_cgroup_put(struct obj_cgroup *objcg);

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);



Byte-sized statistics

NR_SLAB_RECLAIMABLE => NR_SLAB_RECLAIMABLE_B

NR_SLAB_UNRECLAIMABLE => NR_SLAB_UNRECLAIMABLE_B



Results

 ~40% memory savings with SLUB
 ~10+% memory savings with SLAB
 xxx MB to x GB per host in Facebook’s production
 Reduced memory fragmentation
 No known CPU regressions



Less (complicated) code

$ git diff --stat 85c250cafb31..6915d5907df3

 include/linux/memcontrol.h |  85 ++++++++++++++-

 mm/memcontrol.c            | 610 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-----------------------------------------

 mm/slab.h                  | 370 ++++++++++++++++++++++++++--------------------------------------

 mm/slab_common.c           | 643 +++------------------------------------------------------------------------------------------------------------

 mm/slub.c                  | 229 ++++------------------------------------

 mm/vmstat.c                |  30 +++++-

...

 21 files changed, 769 insertions(+), 1399 deletions(-) (without tests and tools)



Percpu memory accounting

 Reuses the new slab controller design and code
 Merged into 5.9
 Memory cgroup internals are charged to the parent cgroup
 TBD: percpu bpf maps (5.10?)



Kernel memory accounting now

● Significantly less expensive
● Less uniform

○ Not everything is handled by the page allocator
○ Per-page and per-object tracking
○ Memcg reference counting scheme is more complicated
○ Reparenting

● Better reflects different properties of different types of kernel memory
● Fewer gc issues
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