
Recent changes
in the kernel
memory
accounting

Roman Gushchin,
Facebook

2 years ago

 Enabled by default on cgroup v1 and cgroup v2
 Charging/uncharging is performed by the page allocator
 Every charged page keeps a pointer (page->mem_cgroup) and a reference to

the memory cgroup
 Slab (SLAB/SLUB) infrastructure is replicated for each memory cgroup
 Socket memory is an exception

Dying cgroups problem

 Dying cgroup is a cgroup deleted by a user but pinned in the memory
 Memory cgroup is a large objects (xxx KB or x MB)
 The number of dying cgroups grew everywhere

Vmalloc-based kernel stacks

 2 stacks are cached per CPU
 Charging on allocation, uncharging on freeing
 …
 Or maybe not?
 …
 Charging on clone(), uncharging on exit()

VFS cache

 Cgroups are created and destroyed
 But some inodes and dentries stay
 …
 pinning original cgroups
 How to release a memory cgroup without releasing all charged objects?

Slab reparenting

 Recharge slab pages to the parent cgroup
 How to do it efficiently?
 …
 page->mem_cgroup => slab_cache.memcg_params.memcg
 All charges and statistics are fully recursive
 slab_cache.memcg_params.memcg = parent_memcg
 Merged into 5.3

Hm... 400k active task_structs?

Slab utilization problem

 /proc/slab_info shows high 9x%, but it’s not true
 If CONFIG_SLUB_CPU_PARTIAL is on
 Real numbers were 15% to 65%
 …
 So is the memory overhead 0.2%?
 cgroup.memory=nokmem saves ~50% of slab memory

New slab controller

 Shared usage of slab caches and slab pages
 Per-object tracking of slab objects
 Reparenting

External memcg ownership data

#ifdef CONFIG_MEMCG

struct page {

...

union {

struct mem_cgroup *mem_cgroup;

struct obj_cgroup **obj_cgroups;

};

#endif

Byte-sized charging API & reparenting

struct obj_cgroup *get_obj_cgroup_from_current(void);

void obj_cgroup_get(struct obj_cgroup *objcg);

void obj_cgroup_put(struct obj_cgroup *objcg);

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);

Byte-sized statistics

NR_SLAB_RECLAIMABLE => NR_SLAB_RECLAIMABLE_B

NR_SLAB_UNRECLAIMABLE => NR_SLAB_UNRECLAIMABLE_B

Results

 ~40% memory savings with SLUB
 ~10+% memory savings with SLAB
 xxx MB to x GB per host in Facebook’s production
 Reduced memory fragmentation
 No known CPU regressions

Less (complicated) code

$ git diff --stat 85c250cafb31..6915d5907df3

 include/linux/memcontrol.h | 85 ++++++++++++++-

 mm/memcontrol.c | 610 ++---

 mm/slab.h | 370 ++++++++++++++++++++++++++--------------------------------------

 mm/slab_common.c | 643 +++--

 mm/slub.c | 229 ++++------------------------------------

 mm/vmstat.c | 30 +++++-

...

 21 files changed, 769 insertions(+), 1399 deletions(-) (without tests and tools)

Percpu memory accounting

 Reuses the new slab controller design and code
 Merged into 5.9
 Memory cgroup internals are charged to the parent cgroup
 TBD: percpu bpf maps (5.10?)

Kernel memory accounting now

● Significantly less expensive
● Less uniform

○ Not everything is handled by the page allocator
○ Per-page and per-object tracking
○ Memcg reference counting scheme is more complicated
○ Reparenting

● Better reflects different properties of different types of kernel memory
● Fewer gc issues

Thanks!

 Vlastimil Babka
 Jesper Dangaard Brouer
 Shakeel Butt
 Qian Cai
 Nathan Chancellor
 Mel Gorman
 Tejun Heo
 Michal Hocko
 Naresh Kamboju
 Michal Koutný

 Christopher Lameter
 Waiman Long
 Chris Mason
 Andrew Morton
 Bharata B Rao
 Mike Rapoport
 Suleiman Souhlal
 Johannes Weiner
 Dennis Zhou

