
Kernel Configurations for

Safety

Elana Copperman, PhD –Mobileye / Intel

Agenda

• Use cases for Linux in safety critical applications

• Criteria for safe kernel configurations

• Security vs safety in kernel configuration

• Next steps

Disclaimer + call for action

Whoami

• System Safety Architect at Mobileye (part of Intel).

• Supports design of safety features in Mobileye products, including
system boot; drivers; and Linux infrastructure.

• Before working at Mobileye, worked as a Security Architect for
Cisco-Il (formerly NDS) and more recently as a security consultant
for major European automotive concerns on behalf of various Israeli
startups.

• Research interests focus on software engineering methodologies
and security engineering.

Safety-critical applications

• Use cases in automotive domain

• Open source and culture shock

• Safety qualification

• ELISA – Embedded Linux In Safety

Applications, “bridging the gap”

https://elisa.tech/

Dependability

• Security vs safety: what’s in common, what’s different

• Kernel self-protection

This is a brain-dump of the various options for a particularly paranoid system.

• Kernel documentation, kernel self-protection

The goals for successful self-protection systems would be that they are
effective, on by default, require no opt-in by developers, have no performance
impact, do not impede kernel debugging, and have tests. It is uncommon that
all these goals can be met, but it is worth explicitly mentioning them, since
these aspects need to be explored, dealt with, and/or accepted.

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings
https://www.kernel.org/doc/html/latest/security/self-protection.html

Security Criteria

• Effective – achieve well defined goals

• Performance – don’t shoot yourself in the foot

• Do not impede kernel debugging

• On by default

• Require no opt-in by developers

• Have tests

Safety Criteria

• Safety is all about risk management of liability

• Traceability is fundamental, what cannot be measured
does not exist

• Safety will also require well defined and measurable
criteria

• Information leakage (security) vs traceability (safety)

• Traceability → log, journal, audit, debug features

Safety == Security

• Enable CONFIG_BUG_ON_DATA_CORRUPTION

• Disable CONFIG_DEVKMEM

• Enable CONFIG_FORTIFY_SOURCE

• Disable CONFIG_PROC_KCORE

Safety != Security

• Enable CONFIG_DEVMEM

• Enable CONFIG_ELF_CORE

• Enable CONFIG_FTRACE_SYSCALLS

• Enable CONFIG_HIBERNATION

• Enable CONFIG_KEXEC

• Enable CONFIG_PROC_PAGE_MONITOR

• Enable CONFIG_STACK_TRACER

Classification

• Methodology - Kernel documentation

• Attack surface reduction
➢ CONFIG_STRICT_KERNEL_RWX, CONFIG_STRICT_MODULE_RWX

Executable code/RO data must not be writable, all data must not
be executable

➢ X86 SMEP/SMAP, ARM PXN/PAN Kernel must never execute user-
space memory

➢ seccomp How to define “unsafe” system calls? How to define
“trusted” processes with access to privileged syscalls (e.g., BPF
creation or user namespaces)?

https://www.kernel.org/doc/html/latest/security/self-protection.html#attack-surface-reduction

Classification (con’t)

• Memory integrity
➢ Stack buffer overflow - CONFIG_STACKPROTECTOR,

CONFIG_STACKPROTECTOR_STRONG,

➢ Heap memory integrity – CONFIG_HARDENED_USERCOPY

➢ Enable CONFIG_SCHED_STACK_END_CHECK

➢ Enable CONFIG_STACKTRACE

➢ Define CONFIG_FRAME_WARN size

Kernel Memory

• CONFIG_STRICT_KERNEL_RWX

• CONFIG_STRICT_MODULE_RWX

• Module safety

➢ Tristate, M configuration

➢ Enable CONFIG_MODULES

➢ Disable CONFIG_MODULE_FORCE_LOAD

➢ Enable CONFIG_MODVERSIONS

➢ CONFIG_MODULE_SIG

Classification (some more)

• Probabilistic defenses
➢ KASLR – Enable CONFIG_RANDOMIZE_BASE

➢ Heap randomization - Disable CONFIG_COMPAT_BRK

➢ Enable CONFIG_SLAB_FREELIST_RANDOM

➢ Enable CONFIG_SLAB_FREELIST_HARDENED

• Preventing information exposures
➢ Enable CONFIG_SLUB_DEBUG

➢ CONFIG_PAGE_POISINING

ISO26262 - FFI

• Freedom From Interference

Absence of cascading failures between two or more elements that could
lead to the violation of a safety requirement

• Chapter 6, Annex D – Achievement of FFI

➢ Timing and execution – blocking of execution, deadlocks, livelocks, incorrect
allocation of execution time, incorrect synchronization between software elements

➢ Memory – corruption of content, inconsistent data, stack overflow or underflow, read
or write access to memory allocated to another software element

➢ Exchange of information – repetition/loss/delay/insertion/incorrect addressing/
corruption of information, asymmetric information sent from a sender to multiple
receivers, information from a sender received by only a subset of receivers, blocking
access to a communication channel

Ongoing work

• ISO26262 is domain specific, over-restrictive

• CWE (Common Weakness Enumeration) software

development categories from Security → Safety

• Kernel configurations are only a part of the picture

• Focus on test frameworks for safety validation

• Dependability Micro-conference

https://cwe.mitre.org/data/definitions/699.html

Debug features

• Enable CONFIG_DEBUG_KMEMLEAK

• Enable CONFIG_DEBUG_MEMORY_INIT

• Enable CONFIG_DEBUG_OBJECTS

• Enable CONFIG_DEBUG_PAGEALLOC

• Enable CONFIG_DEBUG_PER_CPU_MAPS

• Enable CONFIG_DEBUG_RODATA

• Enable CONFIG_DEBUG_SECTION_MISMATCH

• Enable CONFIG_DEBUG_STACKOVERFLOW

• Enable CONFIG_DEBUG_VM

Passive safety features

• Enable CONFIG_KALLSYMS

• Enable CONFIG_KPROBES

• Enable CONFIG_PAGE_OWNER

• Enable CONFIG_REFCOUNT_FULL

• Enable CONFIG_SLUB_STATS

• Enable CONFIG_STACK_USAGE

Lockup and hangs

• Enable CONFIG_DETECT_HUNG_TASK

• Enable CONFIG_SOFTLOCKUP_DETECTOR

• Enable CONFIG_WQ_WATCHDOG

Lock mechanisms self-checks

• Enable CONFIG_DEBUG_ATOMIC_SLEEP

• Enable CONFIG_DEBUG_LOCK_ALLOC

• Enable CONFIG_DEBUG_LOCKING_API_SELFTESTS

• Enable CONFIG_DEBUG_MUTEXES

• Enable CONFIG_DEBUG_RT_MUTEXES

• Enable CONFIG_DEBUG_SPINLOCK

Lock mechanisms self-checks

(con’t)

• Enable CONFIG_LOCK_STAT

• Enable CONFIG_LOCK_TORTURE_TEST

• Enable CONFIG_PROVE_LOCKING

• Enable CONFIG_RCU_TORTURE_TEST

• Enable CONFIG_WW_MUTEX_SELFTEST

• Enable CONFIG_DEBUG_WW_MUTEX_SLOWPATH

Vision: Safety Policy

• Security policies are a set of rules which are used to

configure security decisions such as access control in a

particular context.

• Similarly, we may define safety policies as a set of rules

which may be used to configure safety mechanisms in a

particular use case.

• The safety policy may define features such as ASIL level and

specific constraints on communication between hardware

and/or software elements.

Safety Policy

• Based on the designated safety policy, the kernel image can be

built with a pre-defined set of default configurations.

• The chosen default configurations will be based on clear criteria

and will be pre-assessed for safety qualification

• Any deviation from default policy in a specific use case will

require justification

LSaMs = Linux Safety Modules

• This methodology can be extended.

• Long-term, we can aim to define “Linux Safety Modules” as

building blocks for safety-critical applications.

• LSaMs are pre-qualified out of context but provide tools,

criteria and guidelines for design and integration in the

specific context of the use case.

• The safety qualification for the final product is expected to be

based on those building blocks.

Next steps

• Safety Policies

• Classifications of existing kernel configurations

• New features / configurations relevant to specific

safety policies

• Long-term deployment and maintenance

elana.copperman@mobileye.com

mailto:elana.copperman@mobileye.com

