
Desktop Resource Management (GNOME)

Benjamin Berg <bberg@redhat.com>

August 25, 2020



Section 1
Motivation



Motivation

Resource distribution

CPU time
Memory (caches, data, ...)
IO access



Motivation

Resource distribution – status quo

Resources are distributed between processes
Various controls available:

process nice value
ulimit

⇒ All processes are usually treated equally



Motivation

Resource distribution – status quo

Resources are distributed between processes
Various controls available:

process nice value
ulimit

⇒ All processes are usually treated equally



Motivation

Resource distribution – what we want

Treat users equally
Treat applications equally
Keep the desktop responsive
Possibly discriminate based on

how important a service is
whether a user is active
whether an application is focused

Improved power management
improve power attribution
freeze background application
...



Motivation

Resource distribution – what we want

Treat users equally
Treat applications equally
Keep the desktop responsive
Possibly discriminate based on

how important a service is
whether a user is active
whether an application is focused

Improved power management
improve power attribution
freeze background application
...



Motivation

Resource distribution – what we want

Treat users equally
Treat applications equally
Keep the desktop responsive
Possibly discriminate based on

how important a service is
whether a user is active
whether an application is focused

Improved power management
improve power attribution
freeze background application
...



Motivation

Resource distribution – what we want

Treat users equally
Treat applications equally
Keep the desktop responsive
Possibly discriminate based on

how important a service is
whether a user is active
whether an application is focused

Improved power management
improve power attribution
freeze background application
...



Motivation

Resource distribution – what we want

Treat users equally
Treat applications equally
Keep the desktop responsive
Possibly discriminate based on

how important a service is
whether a user is active
whether an application is focused

Improved power management
improve power attribution
freeze background application
...



Spinner demo created by David Edmundson (video)

https://benjamin.sipsolutions.net/kde-david-edmundson-spinner-demo.mp4


Motivation

Thrashing and OOM handling

Still a problem in 2020
Shell and graphical applications are susceptible
Various approaches exist:

MemoryAvailable based (e.g. EarlyOOM, nohang)
PSI based (e.g. nohang, low-memory-monitor, oomd)
Faster swap (e.g. swap on zram)

⇒



Motivation

Thrashing and OOM handling

Still a problem in 2020
Shell and graphical applications are susceptible
Various approaches exist:

MemoryAvailable based (e.g. EarlyOOM, nohang)
PSI based (e.g. nohang, low-memory-monitor, oomd)
Faster swap (e.g. swap on zram)

⇒



Motivation

Thrashing and OOM handling

Still a problem in 2020
Shell and graphical applications are susceptible
Various approaches exist:

MemoryAvailable based (e.g. EarlyOOM, nohang)
PSI based (e.g. nohang, low-memory-monitor, oomd)
Faster swap (e.g. swap on zram)

⇒ Reasonably fast
Effectively ensures the kernel has enough space for (file) caches



Motivation

Thrashing and OOM handling

Still a problem in 2020
Shell and graphical applications are susceptible
Various approaches exist:

MemoryAvailable based (e.g. EarlyOOM, nohang)
PSI based (e.g. nohang, low-memory-monitor, oomd)
Faster swap (e.g. swap on zram)

⇒ PSI is inherently slow (>10 s)
Good at identifying thrashing workloads



Motivation

Thrashing and OOM handling

Still a problem in 2020
Shell and graphical applications are susceptible
Various approaches exist:

MemoryAvailable based (e.g. EarlyOOM, nohang)
PSI based (e.g. nohang, low-memory-monitor, oomd)
Faster swap (e.g. swap on zram)

⇒ Shown to help with interactivity



Motivation

Thrashing and OOM handling

Still a problem in 2020
Shell and graphical applications are susceptible
Various approaches exist:

MemoryAvailable based (e.g. EarlyOOM, nohang)
PSI based (e.g. nohang, low-memory-monitor, oomd)
Faster swap (e.g. swap on zram)

⇒ Not effective at protecting graphical session



Motivation

Thrashing and OOM handling

What do we really need?
Responsive shell and task manager
Ability to identify and kill problematic tasks
Isolate runaway applications



Motivation

Thrashing and OOM handling

What do we really need?
Responsive shell and task manager
Ability to identify and kill problematic tasks
Isolate runaway applications

cgroups can be used to protect these tasks
e.g. memory.low, CPU controller, IO controller

⇒ Prevent problematic situations from getting worse!



Motivation

Thrashing and OOM handling

What do we really need?
Responsive shell and task manager
Ability to identify and kill problematic tasks
Isolate runaway applications

Memory pressure based (PSI)
systemd-oomd



Motivation

Thrashing and OOM handling

What do we really need?
Responsive shell and task manager
Ability to identify and kill problematic tasks
Isolate runaway applications

Place each application into a cgroup



Section 2
systemd



systemd

systemd

Allows managing kernel cgroups
Desktop Environments were not ready until recently



systemd

systemd – work that has happened

DBus per-user session bus
Fixes across the stack for session detection
Services were ported to systemd
GNOME session itself being ported
VTE (gnome-terminal) creates a scope for each tab
Other Desktop Environments are also working on this



systemd

systemd – work that has happened

DBus per-user session bus
Fixes across the stack for session detection
Services were ported to systemd
GNOME session itself being ported
VTE (gnome-terminal) creates a scope for each tab
Other Desktop Environments are also working on this



systemd

systemd – conventions

A draft is available
https://systemd.io/DESKTOP_ENVIRONMENTS/

Split user cgroups into three parts:
session.slice Essential session processes

app.slice Normal applications
background.slice Background tasks
Everything should be moved into one of these.
Encode application ID in systemd unit name

https://systemd.io/DESKTOP_ENVIRONMENTS/


systemd

systemd – conventions

cgroupfs

system.slice

user.slice

user-1000.slice

session-2.scope

X server and a few other processes

user@1000.service

session.slice

org.gnome.Shell@wayland.service

org.gnome.SettingsDaemon.*.service

. . .

app.slice

Applications should go here

background.slice



systemd

systemd – what we can do

Modify cgroup attributes per-slice and per-application
Manage per-application resources
Create a task manager that properly shows applications rather than processes
https://gitlab.gnome.org/GNOME/gnome-usage/-/merge_requests/72

Example done in KDE:
http://blog.davidedmundson.co.uk/blog/modern-process-management-on-the-desktop/

https://gitlab.gnome.org/GNOME/gnome-usage/-/merge_requests/72
http://blog.davidedmundson.co.uk/blog/modern-process-management-on-the-desktop/








systemd

systemd – ongoing tasks

We want to rely on systemd for more purposes
e.g. launching XDG autostart applications
APIs are needed to correctly launch applications

KDE has working ApplicationLauncherJob/CommandLauncherJob APIs1

GLib APIs will be updated to use scopes2

However, it is already useful as is!

1https://api.kde.org/frameworks/kio/html/classKIO_1_1ApplicationLauncherJob.html
https://api.kde.org/frameworks/kio/html/classKIO_1_1CommandLauncherJob.html

2https://gitlab.gnome.org/GNOME/glib/-/merge_requests/1596

https://api.kde.org/frameworks/kio/html/classKIO_1_1ApplicationLauncherJob.html
https://api.kde.org/frameworks/kio/html/classKIO_1_1CommandLauncherJob.html
https://gitlab.gnome.org/GNOME/glib/-/merge_requests/1596


systemd

systemd – ongoing tasks

We want to rely on systemd for more purposes
e.g. launching XDG autostart applications
APIs are needed to correctly launch applications

KDE has working ApplicationLauncherJob/CommandLauncherJob APIs1

GLib APIs will be updated to use scopes2

However, it is already useful as is!

1https://api.kde.org/frameworks/kio/html/classKIO_1_1ApplicationLauncherJob.html
https://api.kde.org/frameworks/kio/html/classKIO_1_1CommandLauncherJob.html

2https://gitlab.gnome.org/GNOME/glib/-/merge_requests/1596

https://api.kde.org/frameworks/kio/html/classKIO_1_1ApplicationLauncherJob.html
https://api.kde.org/frameworks/kio/html/classKIO_1_1CommandLauncherJob.html
https://gitlab.gnome.org/GNOME/glib/-/merge_requests/1596


Section 3
uresourced



uresourced

uresourced – taking the next step

low-level functionality is mostly ready
none of the features are currently enabled
It is easy and safe to do though!



uresourced

uresourced – taking the next step

low-level functionality is mostly ready
none of the features are currently enabled
It is easy and safe to do though!



uresourced

uresourced – taking the next step

Makes current GNOME conform closer to systemd convention
(changes will be upstreamed)
Enables CPU and IO controllers for applications
Tracks active sessions on graphical seats
Allocates 250MiB memory.low to the active user
(capped at 10% of system memory)
Forwards allocation to session.slice
Disables memory controller for children, memory_recursiveprot3 will fix that
Sets CPUWeight=500, IOWeight=500 for active user

Configure it using /etc/uresourced.conf

3https://github.com/systemd/systemd/pull/16559



uresourced

uresourced – what does this mean

Applications are equal when competing for CPU
The active user will receive a greater share of CPU
The core session is protected from thrashing



uresourced

uresourced – what is problematic

IO controller is not fully configured
A new daemon is likely overkill
Opaque for the Desktop Environment
(e.g. let DE choose memory allocation)
Works best with wayland (X server not protected)

⇒ Good start, probably should be superseded eventually



uresourced

uresourced – what is problematic

IO controller is not fully configured
A new daemon is likely overkill
Opaque for the Desktop Environment
(e.g. let DE choose memory allocation)
Works best with wayland (X server not protected)

⇒ Good start, probably should be superseded eventually



uresourced

uresourced – try it

Will be shipped in Fedora 33
On Fedora 32, simply install it:
$ sudo dnf install uresourced
$ sudo systemctl enable uresourced.service
and reboot
Otherwise, install from source:
https://gitlab.freedesktop.org/benzea/uresourced

You should not notice any difference in most cases

https://gitlab.freedesktop.org/benzea/uresourced


Section 4
Discussion



Discussion

Discussion

Will systemd-oomd work for the desktop?
Is PSI sufficient to detect problematic workloads?
How should we react to problematic workloads?

Is it good to simply kill problematic workloads?
Should the user have a choice on whether to kill or not?
Should we actively contain the problematic workload?
(e.g. by setting memory.high, cpu.max, io.max, ...)

Not aware of sufficient testing
⇒ Hopefully systemd-oomd is good enough!



Discussion

Discussion

Will systemd-oomd work for the desktop?
Is PSI sufficient to detect problematic workloads?
How should we react to problematic workloads?

Is it good to simply kill problematic workloads?
Should the user have a choice on whether to kill or not?
Should we actively contain the problematic workload?
(e.g. by setting memory.high, cpu.max, io.max, ...)

Not aware of sufficient testing
⇒ Hopefully systemd-oomd is good enough!



Discussion

Discussion

Are we isolating the user session sufficently?
We use cpu.weight, io.weight and memory.low

Should give enough guarantees (i.e. CPU time, few and fast page faults)
Setups may easily be crippled if controllers are not working well

Kernel not being ready
e.g. LUKS, LVM and ext4 are common
Insufficient configuration due to lack of systemd features
e.g. systemd does not set io.cost.model4

⇒ Kernel features are good, but may not be fully usable!

4https://github.com/systemd/systemd/issues/16403

https://github.com/systemd/systemd/issues/16403


Discussion

Discussion

Are we isolating the user session sufficently?
We use cpu.weight, io.weight and memory.low

Should give enough guarantees (i.e. CPU time, few and fast page faults)
Setups may easily be crippled if controllers are not working well

Kernel not being ready
e.g. LUKS, LVM and ext4 are common
Insufficient configuration due to lack of systemd features
e.g. systemd does not set io.cost.model4

⇒ Kernel features are good, but may not be fully usable!

4https://github.com/systemd/systemd/issues/16403

https://github.com/systemd/systemd/issues/16403


Discussion

Discussion

What else can and should we do?
Improve interactivity of applications
e.g. prioritize focused application
Power saving (can we learn from mobile?)
e.g. freeze tasks, change timer accuracy, identify problematic applications
Improved developer tools
Any other ideas?



Discussion

Discussion

What else can and should we do?
Improve interactivity of applications
e.g. prioritize focused application
Power saving (can we learn from mobile?)
e.g. freeze tasks, change timer accuracy, identify problematic applications
Improved developer tools
Any other ideas?


	Motivation
	systemd
	uresourced
	Discussion

