

Desktop Resource Management (GNOME)

Benjamin Berg <bberg@redhat.com> August 25, 2020

Section 1 Motivation

Resource distribution

- CPU time
- Memory (caches, data, ...)
- IO access

Resource distribution - status quo

- Resources are distributed between processes
- Various controls available:
 - process nice value
 - ulimit

 \Rightarrow All processes are usually treated equally

Resource distribution - status quo

- Resources are distributed between processes
- Various controls available:
 - process nice value
 - ulimit
- $\Rightarrow\,$ All processes are usually treated equally

Resource distribution - what we want

Treat users equally

- Treat applications equally
- Keep the desktop responsive
- Possibly discriminate based on
 - how important a service is
 - whether a user is active
 - whether an application is focused
- Improved power management
 - improve power attribution
 - freeze background application

Resource distribution - what we want

- Treat users equally
- Treat applications equally
- Keep the desktop responsive
- Possibly discriminate based on
 - how important a service is
 - whether a user is active
 - whether an application is focused
- Improved power management
 - improve power attribution
 - freeze background application

Resource distribution - what we want

- Treat users equally
- Treat applications equally
- Keep the desktop responsive
- Possibly discriminate based on
 - how important a service is
 - whether a user is active
 - whether an application is focused
- Improved power management
 - improve power attribution
 - freeze background application

Resource distribution - what we want

- Treat users equally
- Treat applications equally
- Keep the desktop responsive
- Possibly discriminate based on
 - how important a service is
 - whether a user is active
 - whether an application is focused
- Improved power management
 - improve power attribution
 - freeze background application

Resource distribution - what we want

Treat users equally

. . . .

- Treat applications equally
- Keep the desktop responsive
- Possibly discriminate based on
 - how important a service is
 - whether a user is active
 - whether an application is focused
- Improved power management
 - improve power attribution
 - freeze background application

Spinner demo created by David Edmundson (video)

- Still a problem in 2020
- Shell and graphical applications are susceptible
- Various approaches exist:
 - MemoryAvailable based (e.g. EarlyOOM, nohang)
 - PSI based (e.g. nohang, low-memory-monitor, oomd)
 - Faster swap (e.g. swap on zram)

- Still a problem in 2020
- Shell and graphical applications are susceptible
- Various approaches exist:
 - MemoryAvailable based (e.g. EarlyOOM, nohang)
 - PSI based (e.g. nohang, low-memory-monitor, oomd)
 - Faster swap (e.g. swap on zram)

😓 Red Hat

Thrashing and OOM handling

- Still a problem in 2020
- Shell and graphical applications are susceptible
- Various approaches exist:
 - MemoryAvailable based (e.g. EarlyOOM, nohang)
 - PSI based (e.g. nohang, low-memory-monitor, oomd)
 - Faster swap (e.g. swap on zram)
- $\Rightarrow \text{ Reasonably fast}$

Effectively ensures the kernel has enough space for (file) caches

😓 Red Hat

- Still a problem in 2020
- Shell and graphical applications are susceptible
- Various approaches exist:
 - MemoryAvailable based (e.g. EarlyOOM, nohang)
 - PSI based (e.g. nohang, low-memory-monitor, oomd)
 - Faster swap (e.g. swap on zram)
- $\begin{array}{l} \Rightarrow \ {\sf PSI} \ {\rm is \ inherently \ slow \ } (>\!10\,{\rm s}) \\ {\rm Good \ at \ identifying \ thrashing \ workloads} \end{array}$

- Still a problem in 2020
- Shell and graphical applications are susceptible
- Various approaches exist:
 - MemoryAvailable based (e.g. EarlyOOM, nohang)
 - PSI based (e.g. nohang, low-memory-monitor, oomd)
 - Faster swap (e.g. swap on zram)
- $\Rightarrow\,$ Shown to help with interactivity

- Still a problem in 2020
- Shell and graphical applications are susceptible
- Various approaches exist:
 - MemoryAvailable based (e.g. EarlyOOM, nohang)
 - PSI based (e.g. nohang, low-memory-monitor, oomd)
 - Faster swap (e.g. swap on zram)
- $\Rightarrow\,$ Not effective at protecting graphical session

Thrashing and OOM handling

- Responsive shell and task manager
- Ability to identify and kill problematic tasks
- Isolate runaway applications

Thrashing and OOM handling

- Responsive shell and task manager
- Ability to identify and kill problematic tasks
- Isolate runaway applications
- cgroups can be used to protect these tasks
 e.g. memory.low, CPU controller, IO controller
- \Rightarrow Prevent problematic situations from getting worse!

Thrashing and OOM handling

- Responsive shell and task manager
- Ability to identify and kill problematic tasks
- Isolate runaway applications
- Memory pressure based (PSI)
- systemd-oomd

Thrashing and OOM handling

- Responsive shell and task manager
- Ability to identify and kill problematic tasks
- Isolate runaway applications
- Place each application into a cgroup

Section 2 systemd

systemd

- Allows managing kernel cgroups
- Desktop Environments were not ready until recently

😓 Red Hat

systemd – work that has happened

- DBus per-user session bus
- Fixes across the stack for session detection
- Services were ported to systemd
- GNOME session itself being ported
- VTE (gnome-terminal) creates a scope for each tab
- Other Desktop Environments are also working on this

systemd – work that has happened

- DBus per-user session bus
- Fixes across the stack for session detection
- Services were ported to systemd
- GNOME session itself being ported
- VTE (gnome-terminal) creates a scope for each tab
- Other Desktop Environments are also working on this

systemd - conventions

- A draft is available https://systemd.io/DESKTOP_ENVIRONMENTS/
- Split user cgroups into three parts:

session.slice Essential session processes
 app.slice Normal applications
background.slice Background tasks
Everything should be moved into one of these.

- Encode application ID in systemd unit name

systemd - conventions

cgroupfs

– system.slice

user.slice

ightarrow user-1000.slice

session-2.scope

X server and a few other processes

user@1000.service

session.slice

- org.gnome.Shell@wayland.service

- org.gnome.SettingsDaemon.*.service

∟ . . .

app.slice

 \vdash Applications should go here

background.slice

systemd – what we can do

- Modify cgroup attributes per-slice and per-application
- Manage per-application resources
- Create a task manager that properly shows applications rather than processes https://gitlab.gnome.org/GNOME/gnome-usage/-/merge_requests/72

Example done in KDE:

http://blog.davidedmundson.co.uk/blog/modern-process-management-on-the-desktop/

•						Ap	oplications - Sys	tem Monitor						•	•
÷	Tools \checkmark	≡	Applicatio	ons	Search			📃 Quit A	pplication		v Details Sidebar	📩 Confi	gure colum	nns	
\odot	Overview		CPU	Name	~ Mer	nory	Download	Upload	Read	Write I	Details				
88			6	Firefox	405.	0 MiB					CPU				
►	Processes		9.0%	KSysGua	a 88.2	2 MiB					100%				
ĸ	History		2.0%	Kate	63.4	MiB									
+	Add new page			Konsol	e 14.0	MiB					Memory				
			2.0%								15.3 GiB				
				System S	5 59.5	і МіВ					0 КІВ				
				sessior	ד 7.8	МіВ					Network				
											0 KiB/s				
											Disk				
											0 KiB/s				
											Processes: 8				
											Name		CPU	Memo	ory
											bwrap			448 k	кiв
											spotifyforce-dev	ice-s		163.5	мів
											spotify			17.5 N	∕ів
											spotify			231.0	мів
											bwrap			162 k	кiв
											xdg-dbus-prox	ky –		829 k	кiв
											an atif.				410

	Performance Storage	Q = ×
	Available 5.4 GB Available 8.2 GB	
	🗩 System	3.4 GB
Processor	💫 Evolution Calendar	2.2 GB
	🍅 Web	567 MB
	S Skype	491 MB
Memory	O Chromium Web Browser	473 MB
	Telegram Desktop	327 MB
	dia GNOME Shell	294 MB
	GNOME Clocks	151 MB
	G Fractal	105 MB
	🧭 Text Editor	101 MB
	di Dino	86 MB
	Files	68 MB

	Performance Storage	Q = ×
	Used 11.1 GB Available 5.4 GB	Used 102 MB Available 8.2 GB
Processor	🐻 Evolution Calendar	2.2 GB
	🍘 Web	2.1 GB
	🗱 System	1.8 GB
Memory	Skype	490 MB
	O Chromium Web Browser	480 MB
	🦪 Telegram Desktop	327 MB
	GNOME Shell	293 MB
	GNOME Clocks	151 MB
	S Fractal	105 MB
	📝 Text Editor	101 MB
	👛 Dino	86 MB

systemd – ongoing tasks

- We want to rely on systemd for more purposes e.g. launching XDG autostart applications
- APIs are needed to correctly launch applications
 - KDE has working ApplicationLauncherJob/CommandLauncherJob APIs¹
 - GLib APIs will be updated to use scopes²
- However, it is already useful as is!

¹https://api.kde.org/frameworks/kio/html/classKIO_1_1ApplicationLauncherJob.html https://api.kde.org/frameworks/kio/html/classKIO_1_1CommandLauncherJob.html ²https://gitlab.gnome.org/GNOME/glib/-/merge_requests/1596

systemd – ongoing tasks

- We want to rely on systemd for more purposes e.g. launching XDG autostart applications
- APIs are needed to correctly launch applications
 - KDE has working ApplicationLauncherJob/CommandLauncherJob APIs¹
 - GLib APIs will be updated to use scopes²
- However, it is already useful as is!

¹https://api.kde.org/frameworks/kio/html/classKIO_1_1ApplicationLauncherJob.html https://api.kde.org/frameworks/kio/html/classKIO_1_1CommandLauncherJob.html ²https://gitlab.gnome.org/GNOME/glib/-/merge_requests/1596

Section 3 uresourced

uresourced - taking the next step

- Iow-level functionality is mostly ready
- none of the features are currently enabled
- It is easy and safe to do though!

uresourced - taking the next step

- Iow-level functionality is mostly ready
- none of the features are currently enabled
- It is easy and safe to do though!

uresourced – taking the next step

- Makes current GNOME conform closer to systemd convention (changes will be upstreamed)
- Enables CPU and IO controllers for applications
- Tracks active sessions on graphical seats
- Allocates 250 MiB memory.low to the active user (capped at 10% of system memory)
- Forwards allocation to session.slice
 Disables memory controller for children, memory_recursiveprot³ will fix that
- Sets CPUWeight=500, IOWeight=500 for active user

Configure it using /etc/uresourced.conf

³https://github.com/systemd/systemd/pull/16559

uresourced – what does this mean

- Applications are equal when competing for CPU
- The active user will receive a greater share of CPU
- The core session is protected from thrashing

uresourced - what is problematic

- IO controller is not fully configured
- A new daemon is likely overkill
- Opaque for the Desktop Environment (e.g. let DE choose memory allocation)
- Works best with wayland (X server not protected)
- \Rightarrow Good start, probably should be superseded eventually

uresourced - what is problematic

- IO controller is not fully configured
- A new daemon is likely overkill
- Opaque for the Desktop Environment (e.g. let DE choose memory allocation)
- Works best with wayland (X server not protected)
- $\Rightarrow\,$ Good start, probably should be superseded eventually

uresourced - try it

- Will be shipped in Fedora 33
- On Fedora 32, simply install it:
 - \$ sudo dnf install uresourced
 - \$ sudo systemctl enable uresourced.service
 and reboot
- Otherwise, install from source: https://gitlab.freedesktop.org/benzea/uresourced
- You should not notice any difference in most cases

Section 4 Discussion

Discussion

Will systemd-oomd work for the desktop?

- Is PSI sufficient to detect problematic workloads?
- How should we react to problematic workloads?
 - Is it good to simply kill problematic workloads?
 - Should the user have a choice on whether to kill or not?
 - Should we actively contain the problematic workload?
 (e.g. by setting memory.high, cpu.max, io.max, ...)
- Not aware of sufficient testing
- ⇒ Hopefully systemd-oomd is good enough!

Discussion

Will systemd-oomd work for the desktop?

- Is PSI sufficient to detect problematic workloads?
- How should we react to problematic workloads?
 - Is it good to simply kill problematic workloads?
 - Should the user have a choice on whether to kill or not?
 - Should we actively contain the problematic workload?
 (e.g. by setting memory.high, cpu.max, io.max, ...)
- Not aware of sufficient testing
- \Rightarrow Hopefully systemd-oomd is good enough!

Discussion

Are we isolating the user session sufficently?

- We use cpu.weight, io.weight and memory.low
- Should give enough guarantees (i.e. CPU time, few and fast page faults)
- Setups may easily be crippled if controllers are not working well
 - Kernel not being ready
 - e.g. LUKS, LVM and ext4 are common
 - Insufficient configuration due to lack of systemd features e.g. systemd does not set io.cost.model⁴
- ⇒ Kernel features are good, but may not be fully usable!

⁴https://github.com/systemd/systemd/issues/16403

Discussion

Are we isolating the user session sufficently?

- We use cpu.weight, io.weight and memory.low
- Should give enough guarantees (i.e. CPU time, few and fast page faults)
- Setups may easily be crippled if controllers are not working well
 - Kernel not being ready
 - e.g. LUKS, LVM and ext4 are common
 - Insufficient configuration due to lack of systemd features e.g. systemd does not set io.cost.model⁴
- $\Rightarrow\,$ Kernel features are good, but may not be fully usable!

⁴https://github.com/systemd/systemd/issues/16403

Discussion

What else can and should we do?

- Improve interactivity of applications
 e.g. prioritize focused application
- Power saving (can we learn from mobile?)
 e.g. freeze tasks, change timer accuracy, identify problematic applications
- Improved developer tools
- Any other ideas?

Discussion

What else can and should we do?

- Improve interactivity of applications
 e.g. prioritize focused application
- Power saving (can we learn from mobile?)
 e.g. freeze tasks, change timer accuracy, identify problematic applications
- Improved developer tools
- Any other ideas?