
Data-race detection in the 
Linux kernel

Marco Elver <elver@google.com>

mailto:elver@google.com


Why do we need a race detector?
● Thinking about multiple threads of 

execution is notoriously difficult.

● Kernel's job inherently concurrent.

● Tension between performant vs. simpler 

synchronization mechanisms.

● Numerous advanced synchronization 

mechanisms.

Tool assistance!

2



The Kernel Concurrency Sanitizer (KCSAN)

● Kernel Concurrency Sanitizer (KCSAN): 
dynamic race detector (at runtime).

○ Detects "data races" by default (more with 

special assertions, discussed later).

● KCSAN merged into Linux 5.8.
○ Development version on Paul E. McKenney's 

-rcu tree.

3



Background

4



What are data races?

● C-language and compilers evolved oblivious to concurrency.

● Optimizing compilers are becoming more creative [1].
○ load tearing,

○ store tearing,

○ load fusing,

○ store fusing,

○ code reordering,

○ invented loads,

○ invented stores,

○ … and more.

[1] Jade Alglave, Will Deacon, Boqun Feng, David Howells, Daniel Lustig, Luc Maranget, Paul E. McKenney, 

Andrea Parri, Nicholas Piggin, Alan Stern, Akira Yokosawa, and Peter Zijlstra. "Who's afraid of a big bad 

optimizing compiler?", LWN 2019. URL: https://lwn.net/Articles/793253/ 

➢ Need to tell compiler about concurrent code.

5

https://lwn.net/Articles/793253/


What are data races?

"Data race" defined via language's memory consistency model.

● C-language and compilers no longer oblivious to concurrency:
○ C11 introduced memory model: "data races cause undefined behaviour" — not Linux's model!

● Linux kernel has its own memory model (LKMM), giving semantics to 
concurrent code.

6



What are data races?

➢ Data races (✘) occur if:
○ Concurrent conflicting accesses;

■ they conflict if they access the same location 
and at least one is a write.

○ At least one is a plain access (e.g. " ").
■ vs. "marked" accesses: 

… 

            

…

…

…

…

✘

✘

✘

…✔

✘

✘

✔

7



What are data races?

Data-race-free code has several benefits:

1. Well-defined. Avoids having to reason about compiler and architecture to 
determine whether a given data race is benign.

2. Fewer bugs. Data races can also indicate higher-level race-condition bugs.
○ E.g. failing to synchronize accesses using spinlocks, mutexes, RCU, etc.

➢ Prevent bugs, and countless hours debugging elusive race conditions!

8



A day in the life of a compiler

9

optimize: fuse loads



A day in the life of a compiler

10



A day in the life of a compiler

11



A day in the life of a compiler

✔

12



Data races often symptom of more serious issue

Careful, if symptom of higher-level issue!
13



Some numbers

Number of known fixes to address data races (since KCSAN was announced 
September 2019): ~60

Number of current KCSAN reports on syzbot: ~350
● Biggest challenge: filter and prioritize.

Want to also encourage testing to prevent issues:

14

https://syzkaller.appspot.com/


Data-race detection in the Linux kernel

15



Past attempts at data race detectors for the kernel
Kernel Thread Sanitizer (KTSAN) [1]: 

● Detect data races at runtime.

● Compiler instrumentation.
● Runtime: Same algorithm as user space 

ThreadSanitizer (TSAN) v2.
○

● Happens-before race detector (vector clocks).

Pros:
● few false negatives, precise, detects memory 

ordering issues (missing memory barriers etc.).

Cons:
● scalability, memory overhead, false positives 

without annotating all synchronization primitives.

…

…
…

…

…

…

github.com/google/ktsan/wiki

[1] Andrey Konovalov. "KernelThreadSanitizer (KTSAN): a 
data race detector for the Linux kernel", 2015.
URL: github.com/google/ktsan/wiki#implementation 

16

https://github.com/google/ktsan/wiki
https://github.com/google/ktsan/wiki#implementation


Past attempts at data race detectors for the kernel

Other interesting approaches:

● RaceHound: github.com/kmrov/racehound

● Based on DataCollider approach [1]:
○ set HW breakpoint + delay;

○ if breakpoint triggered ⇒ race;

○ if value changed ⇒ race.

● … probably more … 

Why did they never make it into mainline?

[1] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. "Effective Data-Race Detection for 

the Kernel", OSDI 2010. URL: https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf

17

https://github.com/kmrov/racehound
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf


What is a reasonable design for the kernel?

Requirement
RaceHound        DataCollider Kernel Thread Sanitizer 

(KTSAN)

Runtime performance ✔ ✔

Low memory overhead ✔ ✘

Prefer false negatives over 
false positives ✔ ✘

Maintenance: unintrusive to 
rest of kernel ✔ ✘

Scalable memory access 
instrumentation ✘                ✔ ✔

Language-level access aware 
(LKMM-compatibility) ✘ ✔

18



What is a reasonable design for the kernel?

Kernel Concurrency Sanitizer 
(KCSAN)

✔

✔

✔

✔

✔

✔

Requirement
RaceHound        DataCollider Kernel Thread Sanitizer 

(KTSAN)

Runtime performance ✔ ✔

Low memory overhead ✔ ✘

Prefer false negatives over 
false positives ✔ ✘

Maintenance: unintrusive to 
rest of kernel ✔ ✘

Scalable memory access 
instrumentation ✘                ✔ ✔

Language-level access aware 
(LKMM-compatibility) ✘ ✔

19



The Kernel Concurrency Sanitizer (KCSAN)
Dynamic data race detector (detecting races at 

runtime).

●
○ Various other options to tweak behaviour.
○ x86-64; coming soon: ARM64.
○ Ports welcome: core code generic and 

portable.

● Need recent compiler: Clang 11 (Linux 

5.8+), GCC 11 (Linux 5.9+)
○ Initially designed to work with most old 

compilers that have , 
but had to change for merging into 5.8.

access 2lockdep info (optional)

title / summary

20

lockdep info (optional)

access 1



KCSAN: Overview

Basic idea: Observe that 2 accesses happen concurrently.

➤ Catch races precisely when they happen!

21



KCSAN: Overview

Which accesses: let compiler instrument memory accesses.

…

…
…

…

…

…

22



KCSAN: Overview

● Catch races using "soft" watchpoints:
○ Set watchpoint, and stall access.

○ If watchpoint already exists ⇒ race.

○ If value changed ⇒ race.

○ Stall accesses with random delays to increase chance to observe race.

■ Default: uniform between [1,80] µs for tasks, [1,20] µs for interrupts.

● Set watchpoints for all instrumented memory accesses.
○ Uninstrumented accesses (plain or marked) will never result in false positives!

● Sampling: periodically set up watchpoints.
○ Default: every ~2000 accesses (uniform random [1,4000]).

○ Caveat: lower probability to detect infrequent races ⇒ offset by good stress tests, or fuzzers like 

syzkaller.

23

https://github.com/google/syzkaller


KCSAN: Runtime

(fast path)

24



KCSAN: Runtime

read write

read ✘ ✔

write ✔ ✔

25



KCSAN: Runtime

(fast path)

26



KCSAN: Runtime

Implementing the 
memory model

plain accesses ✔ (sampling)

marked / atomic ✘
27



KCSAN: Runtime

(slow path)

28



KCSAN: Runtime

read write

read ✘ ✔

write ✔ ✔

Implementing the 
memory model

plain accesses ✔ (sampling)

marked / atomic ✘
29



KCSAN: Soft Watchpoints
● "Soft" watchpoints → flexible, portable, 

scales to arbitrary number.

● Array of longs ( ).

● Indexed based on address page.
○ Can spill into adjacent slots.
○ Index also used to ensure matching 

producers/consumers for report metadata.

30



KCSAN: Soft Watchpoints
● Special encoding, to avoid multiple fields 

and lock-based synchronization.

● Enables use of  for access 

information.

63 62 49 48 0

Example: 64 bits per long, and 4 KiB pages
(Calculated based on  and )

31



Beyond data races

32



Concurrency bugs that are not data races

33



Concurrency bugs that are not data races

34



Concurrency bugs that are not data races

35



Concurrency bugs that are not data races

36



How KCSAN can help find more bugs

●  family of macros.
○ Specify properties of concurrent code, where bugs are not normal data races.

○ Reported as: " "

○ Result of early discussion with community members who pointed out that data-race detection 

alone was not enough to check the complex concurrency designs found in the Linux kernel.

concurrent writes concurrent reads

(var)
(var) ✘ ✔

(var)
(var) ✘ ✘

(var, mask) ✔ ✘ ✔

37



Conclusion

38



Early community feedback and iterate
Examples:

●
●  macro
●

● (lockdep integration)

…

- - -   Long process, uncertain

39



Open questions

A. How should we report data races from CI systems? (syzbot..)
○ Currently needs moderation, but also want expert eyes!

○ Keep sending one-by-one?

○ Or batch data race reports from subsystems?

B. How to deal with plain read-modify-writes (" …")?
○ Concurrent use is pervasive.

○ Some can safely be marked .

○ But, in some cases really hard to say if safe. What to do?

40



Concurrency bugs should fear the big bad data-race detector

● Data races harmful: beware compiler, and/or symptom of deeper issues.
● Need tool assistance: growing kernel, many synchronization mechanisms.

The Kernel Concurrency Sanitizer (KCSAN)
● Available in mainline since Linux 5.8.
● Compile with: 

Marco Elver, Paul E. McKenney, Dmitry Vyukov, Andrey Konovalov, Alexander Potapenko, Kostya 

Serebryany, Alan Stern, Andrea Parri, Akira Yokosawa, Peter Zijlstra, Will Deacon, Daniel Lustig, Boqun 

Feng, Joel Fernandes, Jade Alglave, and Luc Maranget. "Concurrency bugs should fear the big bad 
data-race detector." Linux Weekly News (LWN), 2020. URL: https://lwn.net/Articles/816850/ 

Links: github.com/google/ktsan/wiki/KCSAN
41

https://lwn.net/Articles/816850/
https://github.com/google/ktsan/wiki/KCSAN


Backup: Some interesting KCSAN reports
KCSAN: data-race in __fat_write_inode / fat12_ent_get → fixed, invalid filesystem access

KCSAN: data-race in tun_get_user / tun_net_get_stats64 → fixed, tearing u64 on 32-bit arches

KCSAN: data-race in dyntick_save_progress_counter / rcu_irq_enter → fixed, non-atomic atomic_t access

KCSAN: data-race in sctp_assoc_migrate / sctp_hash_obj → fixed

KCSAN: data-race in gro_normal_list / napi_busy_loop → fixed

KCSAN: data-race in task_dump_owner / task_dump_owner → unfixed, potential security issue

KCSAN: data-race in generic_file_buffered_read / generic_file_buffered_read → unfixed, plain RMWs

More: syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce 

42

https://lore.kernel.org/lkml/0000000000000cfff005a26226ce@google.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b1b65750b8db67834482f758fc385bfa7560d228
https://syzkaller.appspot.com/bug?id=7e69ae83c99fe6c81479b0ea2176187f407277f6
https://lore.kernel.org/netdev/20191108002722.129055-1-edumazet@google.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6cf539a87a61a4fbc43f625267dbcbcf283872ed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=312434617cb16be5166316cf9d08ba760b1042a1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c39e342a050a4425348e6fe7f75827c0a1a7ebc5
https://lore.kernel.org/linux-fsdevel/CACT4Y+YE8BtDJvbPfgDQq-HVwiPkg-7CTD1x8xCzeQTPuNG65Q@mail.gmail.com/
https://lore.kernel.org/linux-mm/20200715152912.GA2209203@elver.google.com/
https://syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce

