Data-race detection in the
Linux kernel

Marco Elver <elver@google.com>

[\ [LINUBK

)) \ D E D:‘ "',’:\—r’i\\ \ = rEDERT ~ =
 _ ‘v \B’ALU‘J\/A |31-|_LZ],\§“3 \¢~,@l_*_1|; | 5|;\§'|:‘.|_\{‘<§,‘5 / August 24-28 2020

mailto:elver@google.com

Why do we need a race detector?

e Thinking about multiple threads of
execution is notoriously difficult.

e Kernel'sjob inherently concurrent.

e Tension between performant vs. simpler
synchronization mechanisms.

e Numerous advanced synchronization
mechanisms.

Tool assistance!

The Kernel Concurrency Sanitizer (KCSAN

Merge tag 'locking-kcsan-2020-06-11" of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull the Kernel Concurrency Sanitizer from Thomas Gleixner

AdLH "The Kernel C rre. Sé ze é G race de r
e Kernel Concurrency Sanitizer (KCSAN): TRk it oo cospilacsioe Lostisserturians auf wiee 3

watchpoint-based sampling approach to detect races

dynamic race detector (at runtime). Tound”Legitinate huge. - e 07 quite sone tine and has slready

Unfortunately it comes with a limitation, which was only understood

o Detects "dataraces" by default (more with [ota: i tha Hevaloguant ojote:
SpeCial assel’tions, discussed |ate|’), It requires an up to date CLANG-11 compiler

CLANG-11 is not yet released (scheduled for June), but it's the only
compiler today which handles the kernel requirements and especially
the annotations of functions to exclude them from KCSAN

e KCSAN merged into Linux 5.8. e o

These annotations really need to work so that low level entry code and

o 1 especially int3 text poke handling can be completely isolated.

o Development version on Paul E. McKenney's
A detailed discussion of the requirements and compiler issues can be

found here:

-rcu tree.

https://lore.kernel.org/lkml/CANpmjNMTsY 8241bS7=XAfqvZHFLrVEkv_ uM4aDUWE kh3Rvbw@mai

We came to the conclusion that trying to work around compiler
limitations and bugs again would end up in a major trainwreck, so
requiring a working compiler seemed to be the best choice.

For Continous Integration purposes the compiler restriction is
manageable and that's where most xxSAN reports come from.

For a change this limitation might make GCC people actually look at
their bugs. Some issues with CSAN in GCC are 7 years old and one has
been 'fixed' 3 years ago with a half baken solution which 'solved' the
reported issue but not the underlying problem.

The KCSAN developers also ponder to use a GCC plugin to become
independent, but that's not something which will show up in a few
days.

Blocking KCSAN until wide spread compiler support is available is not
a really good alternative because the continuous growth of lockless
optimizations in the kernel demands proper tooling support"

Background

What are data races?

e (C-language and compilers evolved oblivious to concurrency.

e Optimizing compilers are becoming more creative [11].

load tearing,

store tearing,

load fusing,

store fusing,

code reordering,

invented loads,

invented stores,

...and more. > Need to tell compiler about concurrent code.

O O O O O O o O

[1] Jade Alglave, Will Deacon, Boqun Feng, David Howells, Daniel Lustig, Luc Maranget, Paul E. McKenney,
Andrea Parri, Nicholas Piggin, Alan Stern, Akira Yokosawa, and Peter Zijlstra. "Who's afraid of a big bad
optimizing compiler?", LWN 2019. URL: https://lwn.net/Articles/793253/

https://lwn.net/Articles/793253/

What are data races?

"Data race" defined via language's memory consistency model.

e C-language and compilers no longer oblivious to concurrency:
o C11introduced memory model: "data races cause undefined behaviour" — not Linux's model!

e Linux kernel has its own memory model (LKMM), giving semantics to
concurrent code.

What are data races?

> () occur if:
o Concurrent conflicting accesses;

m they conflict if they access the same location

and at least one is a write.

o Atleastoneis aplain access (e.g. "x + 42").
[vs. "marked" accesses: READ_ONCE (), WRITE_ONCE(),

smp_load_acquire(), smp_store_release(), atomic_t, ...

Thread 1

X = Oxfofo;

Thread 0

- D
-
T T

What are data races?

Data-race-free code has several benefits:

1. Well-defined. Avoids having to reason about compiler and architecture to
determine whether a given data race is benign.

2. Fewer bugs. Data races can also indicate higher-level race-condition bugs.
o E.g.failing to synchronize accesses using spinlocks, mutexes, RCU, etc.

> Prevent bugs, and countless hours debugging elusive race conditions!

A day in the life of a compiler

void foo(int *x)
{
{ optimize: fuse loads if (*x) {

i (") a = 42; — a
; b

if (*x) b

void foo(int *x)

10

A day in the life of a compiler

void foo(int *x)
{
if (*x) a
if (*x) b

void badwait(int *stop)
{

while (!*stop);
}

void foo(int *x)
{
if (*x) {
a
b

void badwait(int *stop)
{
if (!*stop) {
while(1);
}

11

A day in the life of a compiler

void badwait(int *stop)
{

while (!*stop);

}

WRITE_ONCE(*stop, 1);

while(1);

12

A day in the life of a compiler

void badwait(int *stop)

{
while (!READ_ONCE(*stop));

}

void badwait(int *stop)
{

while (!*stop);
}

WRITE_ONCE(*stop, 1);

13

Data races often symptom of more serious issue

fat: don't allow to mount if the FAT length ==

BUG: KCSAN: data-race in __ fat_write_inode / fatl2_ent_get

If FAT length == 0, the image doesn't have any data. And it can be the
cause of overlapping the root dir and FAT entries.

write to Oxff{f8881015f423c of 4 bytes by task 9966 on cpu 1:
__fat_write_inode+0x246/0x510 fs/fat/inode.c:877

Also Windows treats it as invalid format.

Reported-by: syzbot+6f1624f937d9d6911e2d@syzkaller.appspotmail.com
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>

read to Oxffff8881015f423d of 1 bytes by task 9960 on cpu 0: Cc: Dmitry Vyukov <dvyukov@google.com>

X Link: http://lkml.kernel.org/r/87rlwz8mrd.fsf@mail.parknet.co.jp
fatl2_ent_get+0x5e/0x120 fs/fat/fatent.c:125 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Diffstat
-rw-r--r-- fs/fat/inode.c 6 Wl

diff --git a/fs/fat/inode.c b/fs/fat/inode.c
index e6e68b2274a5c..abcf99debblec 100644
--- a/fs/fat/inode.c
+++ b/fs/fat/inode.c
@@ -1519,6 +1519,12 @@ static int fat read bpb(struct super block *sb, struct
goto out;
}

if (bpb->fat fat length == && bpb->fat32 length == 0) {
if (!silent)
fat msg(sb, KERN ERR, "bogus number of FAT sectors");
goto out;

}
Careful, if symptom of higher-level issue! REG i i

14

Some numbers

Number of known fixes to address data races (since KCSAN was announced
September 2019): ~60

Number of current KCSAN reports on syzbot: ~350
e Biggest challenge: filter and prioritize.

Want to also encourage testing to prevent issues:

$> git log --format=oneline v5.3..v5.8 |

grep -Ei '(fix|avoid) .*[-]race[-]' |
we -1

https://syzkaller.appspot.com/

Data-race detection in the Linux kernel

16

Past attempts at data race detectors for the kernel

Kernel Thread Sanitizer (KTSAN) [1]: github.com/google/ktsan/wiki

Pros:

Cons:

Detect data races at runtime.

Compiler instrumentation.

Runtime: Same algorithm as user space
ThreadSanitizer (TSAN) v2.

o {gcc,clang} -fsanitize=thread

Happens-before race detector (vector clocks).

few false negatives, precise, detects memory
ordering issues (missing memory barriers etc.).

scalability, memory overhead, false positives

without annotating all synchronization primitives.

int x;

__tsan_write4(&x);

-fsanitize=thread
X = 42;

__tsan_read4(&x);
o= X5

[1] Andrey Konovalov. "KernelThreadSanitizer (KTSAN): a
data race detector for the Linux kernel", 2015.
URL: github.com/google/ktsan/wiki#implementation

https://github.com/google/ktsan/wiki
https://github.com/google/ktsan/wiki#implementation

17

Past attempts at data race detectors for the kernel

Other interesting approaches:

e RaceHound: github.com/kmrov/racehound

e Based on DataCollider approach [1]:
o set HW breakpoint + delay;

o if breakpoint triggered = race;
o if value changed = race.

e ...probably more...

Why did they never make it into mainline?

[1] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. "Effective Data-Race Detection for
the Kernel", OSDI 2010. URL: https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf

https://github.com/kmrov/racehound
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf

18

What is a reasonable design for the kernel?

Requirement

RaceHound

DataCollider

Kernel Thread Sanitizer
(KTSAN)

Runtime performance

v

Low memory overhead

Prefer false negatives over
false positives

Maintenance: unintrusive to
rest of kernel

SIS ISIS

Scalable memory access
instrumentation

<

Language-level access aware
(LKMM-compatibility)

<

19

What is a reasonable design for the kernel?

Requirement

RaceHound

DataCollider

Kernel Thread Sanitizer
(KTSAN)

Kernel Concurrency Sanitizer
(KCSAN)

Runtime performance

v

Low memory overhead

Prefer false negatives over
false positives

Maintenance: unintrusive to
rest of kernel

SIS ISIS

Scalable memory access
instrumentation

<

Language-level access aware
(LKMM-compatibility)

<

SISISTSINIS

20

The Kernel Concurrency Sanitizer (KCSAN)

Dynamic data race detector (detecting races at
runtime).

® (CONFIG_KCSAN=y
o Various other options to tweak behaviour.
o x86-64; coming soon: ARMé64.
o Ports welcome: core code generic and
portable.

e Need recent compiler: Clang 11 (Linux
5.8+), GCC 11 (Linux 5.9+)
o Initially designed to work with most old
compilers that have -fsanitize=thread,
but had to change for merging into 5.8.

BUG: KCSAN: data-race in <function-1> / <function-2> title /summary

<operation> to <address> of <size> bytes by <context-1> on cpu <nr>:
<call trace from function-1>

<optional: locks held by context-1> lockdep info (optional)

<operation> to <address> of <size> bytes by <context-2> on cpu <nr>:
<call trace from function-2>
<optional: locks held by context-2> lockdep info (optional)

Reported by Kernel Concurrency Sanitizer on:
<system info>

21

KCSAN: Overview

Basic idea: Observe that 2 accesses happen concurrently.

> Catch races precisely when they happen!

22

KCSAN: Overview

Which accesses: let compiler instrument memory accesses.

int x;

tsan_writed(&x);

-fsanitize=thread -
X = 42;

__tsan_read4(&x);
o= X

KCSAN: Overview

e Catchraces using "soft" watchpoints:
o Setwatchpoint, and stall access.

o If watchpoint already exists = race.
o If value changed = race.
O

Stall accesses with random delays to increase chance to observe race.
m Default: uniform between [1,80] us for tasks, [1,20] us for interrupts.

e Setwatchpoints for all instrumented memory accesses.

o Uninstrumented accesses (plain or marked) will never result in false positives!

e Sampling: periodically set up watchpoints.

o Default: every ~2000 accesses (uniform random [1,4000]).

o Caveat: lower probability to detect infrequent races = offset by good stress tests, or fuzzers like

syzkaller.

23

https://github.com/google/syzkaller

24

KCSAN: Runtime

(fast path)

enter runtime

§

check access(ptr, size, type)

find_watchpoint(ptr, size, expect write)

not found

found

25

KCSAN: Runtime

enter runtime

§

check access(ptr, size, type)

find_watchpoint()

read

write

find_watchpoint(ptr, size, expect write)

read

write

not found

found

26

KCSAN: Runtime

(fast path)

wu:d

should watch(ptr, size, type, ...)

=

no

/

exit runtime

27

KCSAN: Runtime

wu:d

should watch(ptr, size, type, ..

2)

Implementing the
memory model

should watch()

plain accesses

\/ (sampling)

marked / atomic

N

\

no

/

exit runtime

28

KCSAN: Runtime

(slow path)

found

fes

setup_watchpoint(ptr, size, type)

\
delay
then check for race

{as found /alue change

generate report no race

S

exit runtime

29

KCSAN: Runtime

find_watchpoint()

read

write

read

write

enter runtime

§

check access(ptr, size, type)

find_watchpoint(ptr, size, expect write)

Nu‘nd

should watch(ptr, size, type,

2)

lyes
A

found setup_watchpoint(ptr, size, type)

\
delay
then check for race

Implementing the
memory model

should_watch()

{as found /alue change

plain accesses

\/ (sampling)

generate report

marked / atomic

S

no race

exit runtime

no

30

KCSAN: Soft Watchpoints

e "Soft" watchpoints — flexible, portable,
scales to arbitrary number.
e Arrayoflongs (atomic_long_t).

e [ndexed based on address page.
o Canspill into adjacent slots.
o Indexalso used to ensure matching
producers/consumers for report metadata.

INVALID WATCHPOINT

'///EE;;r setup_watchpoint()

[write|size|addr]

<£iiii?ifind+found_watchpoint()

CONSUMED_WATCHPOINT

xit setup_watchpoint()

31

KCSAN: Soft Watchpoints

e Special encoding, to avoid multiple fields
and lock-based synchronization.

e Enablesuseof atomic_long t for access
information.

63 62 49 48

[write|size|addr]

write<1> size<14>

address<49>

Example: 64 bits per long, and 4 KiB pages
(Calculated based on PAGE_SIZE and BITS_PER_LONG)

Beyond data races

B

Concurrency bugs that are not data races

Thread ©

spin_lock(&update_foo lock);
/* Careful! There should be no other
writers to shared foo! Readers ok. */

WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

Concurrency bugs that are not data races

Thread © Thread 1

spin_lock(&update_foo lock); /* update_foo_lock does not
/* Careful! There should be no other need to be held! */
writers to shared_foo! Readers ok. */ ... = READ_ONCE(shared_foo0);

WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

85

Concurrency bugs that are not data races

Thread © Thread 1 Thread 2

spin_lock(&update_foo lock); /* update_foo_lock does not /* Bug! */
/* Careful! There should be no other need to be held! */ WRITE_ONCE(shared foo, 42);

writers to shared_foo! Readers ok. */ ... = READ_ONCE(shared_foo0);

WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

Concurrency bugs that are not data races

Thread © Thread 1 Thread 2

spin_lock(&update_foo lock); /* update_foo_lock does not
/* No other writers to shared foo. */ || need to be held! */

ASSERT_EXCLUSIVE_WRITER(shared_foo); ... = READ_ONCE(shared_foo0);
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

How KCSAN can help find more bugs

e ASSERT_EXCLUSIVE family of macros.

o Specify properties of concurrent code, where bugs are not normal data races.

o Reportedas: "BUG: KCSAN: assert: race in <func-1> / <func-2>"

o Result of early discussion with community members who pointed out that data-race detection
alone was not enough to check the complex concurrency designs found in the Linux kernel.

concurrent writes concurrent reads

ASSERT_EXCLUSIVE_WRITER(var) v
ASSERT_EXCLUSIVE_WRITER_SCOPED(var)

ASSERT_EXCLUSIVE_ACCESS(var)
ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)

ASSERT_EXCLUSIVE_BITS(var, mask) ~masky/ | mask v

Conclusion

89

Early community feedback and iterate KCSAN

Examples:

CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY

data_race(...) macro
CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC

... = READ_ONCE(x) + 1; X = Oxfofo;

CONFIG_KCSAN_VERBOSE (lockdep integration)

reports

Linux-kernel community

fixes collect
More reliable kernel Requirements, preferences
A |
C standard LKMM

- Long process, uncertain

Compilers

40

Open questions

A. How should we report data races from Cl systems? (syzbot..)
o Currently needs moderation, but also want expert eyes!
o Keep sending one-by-one?
o Or batch datarace reports from subsystems?

B. How todeal with plain read-modify-writes ("++, +=, --,
o Concurrent use is pervasive.
o Some can safely be marked data_race().
o But, in some cases really hard to say if safe. What to do?

41

Concurrency bugs should fear the big bad data-race detector

e Dataraces harmful: beware compiler, and/or symptom of deeper issues.
e Need tool assistance: growing kernel, many synchronization mechanismes.

The Kernel Concurrency Sanitizer (KCSAN)
e Available in mainline since Linux 5.8.
e Compile with: CONFIG_KCSAN=y

Marco Elver, Paul E. McKenney, Dmitry Vyukov, Andrey Konovalov, Alexander Potapenko, Kostya
Serebryany, Alan Stern, Andrea Parri, Akira Yokosawa, Peter Zijlstra, Will Deacon, Daniel Lustig, Bogun
Feng, Joel Fernandes, Jade Alglave, and Luc Maranget. "Concurrency bugs should fear the big bad
data-race detector." Linux Weekly News (LWN), 2020. URL: https://lwn.net/Articles/816850/

Links: github.com/google/ktsan/wiki/KCSAN

https://lwn.net/Articles/816850/
https://github.com/google/ktsan/wiki/KCSAN

42

Backup: Some interesting KCSAN reports

KCSAN: data-race in _fat_write_inode / fat12_ent_get — fixed, invalid filesystem access

KCSAN: data-race in tun_get_user / tun_net_get_statsé64 — fixed, tearing u64 on 32-bit arches

KCSAN: data-race in dyntick_save_progress_counter / rcu_irg_enter — fixed, non-atomic atomic_t access
KCSAN: data-race in sctp_assoc_migrate / sctp_hash_obj — fixed

KCSAN: data-race in gro_normal_list / napi_busy_loop — fixed

KCSAN: data-race in task_dump_owner / task_dump_owner — unfixed, potential security issue

KCSAN: data-race in generic_file_buffered_read / generic_file_buffered_read — unfixed, plain RMWs

More: syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce

https://lore.kernel.org/lkml/0000000000000cfff005a26226ce@google.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b1b65750b8db67834482f758fc385bfa7560d228
https://syzkaller.appspot.com/bug?id=7e69ae83c99fe6c81479b0ea2176187f407277f6
https://lore.kernel.org/netdev/20191108002722.129055-1-edumazet@google.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6cf539a87a61a4fbc43f625267dbcbcf283872ed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=312434617cb16be5166316cf9d08ba760b1042a1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c39e342a050a4425348e6fe7f75827c0a1a7ebc5
https://lore.kernel.org/linux-fsdevel/CACT4Y+YE8BtDJvbPfgDQq-HVwiPkg-7CTD1x8xCzeQTPuNG65Q@mail.gmail.com/
https://lore.kernel.org/linux-mm/20200715152912.GA2209203@elver.google.com/
https://syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce

