
A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Daniel Bristot de Oliveira, Daniel Casini, Rômulo Silva de Oliveira and Tommaso Cucinotta
Principal Software Engineer

A theorem for the RT scheduling latency
(and a measurement tool too)

1

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Daniel Bristot de Oliveira, Daniel Casini, Rômulo Silva de Oliveira and Tommaso Cucinotta
Principal Software Engineer

Episode III - Showing the math

2

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Real-Time Linux

Introduction

3

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

“Real-Time” Linux

Introduction

4

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

5

Experimental vs Analytical

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

6

Linux approach

● Linux was adapted to become a RTOS

● PREEMPT_RT: De facto standard

● Evaluated (mainly) with cyclictest

● Cyclictest:

○ Practical: lightweight and out-of-the-box

○ It is a “closed-box” test

○ No demonstration

○ Does not provide evidence of “root-cause”

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

7

Real-time analysis

● Based on the timing description of the system

● Capture all behaviors

● Precisely define the worst cases

● But depends on a precise definition of the

system

● Often overly-simplified

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

But, I like both.

Introduction

8

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Introduction

9

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Episode I: getting formal

10

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Introduction

11

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Demystifying the Real-Time Linux Scheduling Latency

12

Approach

Formal specification Measurement and analysisScheduling latency bound

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Formal Specification

From formal specification to synchronization rules

13

Formally backed natural language arguments

● Generators

○ Basic/Independent behavior

○ e.g., irq_disable/enable, scheduler call

● Translated into a set of operations

● Specifications

○ Relations among generators

○ e.g., necessary conditions to call the scheduler

● Translated into a set of synchronization rules

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

Scheduling latency definition

14

ready AND with the

highest priority:

It covers the case in which

these two actions are

not a single event.

It is scheduler

independent.

There is only one

highest priority thread

on a CPU: it is the one

selected to run by the

scheduler.

The scheduling latency experienced by an arbitrary thread τ is:

● the longest time elapsed between the time A in which any job of τ

becomes ready and with the highest priority,

● and the time F in which the scheduler returns and allows τ to execute

its code.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

Interference and blocking

15

This are well established

terms in the real-time

scheduling literature:

Interference from

higher priority, blocking

from lower priority.

The scheduling latency is caused by:

● Blocking from the current (and so lower) priority

thread;

● Including scheduling.

● Interference from IRQs and NMI.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Blocking bound

16

From the specification that bounds the block to a timeline

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Scheduling latency: start

17

The wakeup is the only

event that causes a

need resched, and that

is why it was not used

here.

But ready means that

the task was awakened.

● The longest time elapsed between the time A in which any job of τ

becomes ready and with the highest priority:

● Generalized to the need_resched event
○ Works for all schedulers

■ cyclictest does not work for DL with NR_TASKS > CPUs.

○ Works for all conditions

■ E.g., a throttled DL task after a replenishment will cause a need

resched without a wakeup.

● Has preempt and IRQ disabled as necessary conditions
○ So we use the occurrence of the first necessary condition as the

starting point of the critical window.

■ E.g., when preemption was disabled for the first time.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Scheduling latency: end

18

We are looking for a

safe-bound, and so we

have to put pessimism

values.

We can latter reduce the

pessimism, but with safe

arguments.

● And the time F in which the scheduler returns and allows τ to execute

its code.
○ Generalized to the preempt_enable after __schedule()

■ Implies that the system crossed the context switch code path.

■ Context switch implies __schedule()

■ Context switch needs:

● Preempt disable to schedule as necessary condition

● irqs disabled by thread as necessary condition

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

How do we bound that?

19

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Need resched -> ctxsw

20

All possible cases

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Timeline and cases

21

All possible cases

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Timeline and cases

22

Variables in the the timeline

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Blocking variables

23

In the model, the

preemption control is

specialized into two

different operations: to

postpone the scheduler

(the most known

behavior) or to protect the

execution of the

__schedule() function from

recursion.

● DPOID: preemption or interrupts disabled to

postpone the scheduler;

● DPAIE: preemption and interrupts enabled, as a

transient state from poid to psd; when scheduling

a new highest priority thread.

● DPSD: preemption disable to schedule;

● DST: delay caused by the scheduling tail; the “non

return” point in which a new arrived task will have to

wait for the current scheduling operation to finish

before scheduling.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Timeline and cases

24

Variables in the the timeline

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Interference bound

Timeline and cases

25

IRQ and NMI interference

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

And the scheduling latency bounds to:

26

The bound considers all

possible cases. Note that

the Latency L is present in

both sides of the equation.

So, L is bounded by the

least positive value

fulfilling the equation (like

on RTA).

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + IIRQ(L)

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

Timeline and cases

27

IRQ and NMI interference

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + IIRQ(L)

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

And the scheduling latency bounds to:

28

The bound considers all

possible cases. Note that

the Latency L is present in

both sides of the equation.

So, L is bounded by the

least positive value

fulfilling the equation (like

on RTA).

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + IIRQ(L)

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Interrupts characterization

Interrupts are workload dependent

29

This topic was heavily

discussed at the Real-time

Micro Conference (inside

Linux Plumbers) in 2019,

more info here:

● Instead of proposing “the best” interrupt

characterization, the rtsl reports the scheduling

latency based on some well-known

characterizations:
○ No interrupt

○ Worst single interrupt

○ Single occurence of all interrupts

○ Sporadic

○ Sliding window (Author’s preferred)

○ Sliding window with oWCET

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Episode II: getting practical
(and efficient)

30

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

A practical scheduling latency estimation tool

31

Method and challenges

● Based on the latency bound

● The latency bound is based on the model

● The model is based on tracing of events

○ but high frequency events

■ hundreds MB/sec/CPU

● Challenges:

○ To minimize the (runtime) overhead

○ Work out-of-the-box

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

32

A toolkit

Kernel space:
- Rtsl events

User space:
- Rtsl command

- Python

Has three commands:

- The record command
saves the trace data;

- The report command
process the trace and
does the analysis.

- The stats command
produces a histogram of
the thread variables

Rtsl: a measurement tool

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl events

33

Low overhead tracer

● Hooks to events

○ Filters the high frequency trace

○ Doing in-kernel processing

○ Use a knob on debugfs to enable the tracing

● For blocking variables:

○ Reports all values or only the discover of new

max values

● For IRQ and NMI:

○ Reports one event for each occurrence

● Discounts the interference:

○ e.g., IRQ interference on a poid

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Experiments

Kernel changes

34

The parser was developed

as a kernel module. In this

way I can leave it off tree...

but it would be better to

have it in.

If we get it in, we can

change the debugfs for

the tracefs.

● The rtsl events depends on:

● preemptirq tracepoints
○ So it needs a “debug/trace” kernel (yeah...)

○ But life finds a way

● Annotations on the preempt_disable to sched
○ No functional changes

● NMI tracepoints
○ Or change in the current one to the extreme points

of the handler

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl record

35

Trace recording

● Captures the values for the variables

○ Only new max values for thread variables

○ Saving them into a trace file

● Calls real tracers to do the tracing:

○ Perf

○ Ftrace

● Controls the trace section

● Saves the trace in the rtsl_data/ dir

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl report

36

Trace processing

● Analyzes the trace!

○ All in user-space

● Most of the tool is done in python

○ Easy to extend the analysis (researchers like)

● Parses the trace file in parallel

○ Per cpu trace parsing (e.g., perf script-c $...)

○ Generates per-cpu database with the data

■ In the rtsl_data/ dir

○ Uses a C trace-plugin create the database

● Database in a sqlite3 file

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl report

37

Data processing

● The analysis is done on the database

○ IRQ analysis needs to read data back and forth

○ Trace can reach tens of GB/per-cpu

● The analysis is done in parallel

● Two outputs:

○ Textual output

○ Charts

■ Using matplotlib

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl report output

38

Textual output

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl report output

39

Chart output

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl stats

40

Online view

● Monitor the thread variables

○ poid/psd/dst/paie...

● Uses BCC

○ Saves histograms in kernel

○ Display in user-space

○ Can plot data

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Experiments

Experiments

41

The experiments passed

by the artifact evaluation!● Scheduling latency measurements on two systems:
○ workstation: eighth CPUs

○ server: twelve CPUs server

● Experiments:
○ Single-core

■ Different duration

■ Different workload

○ Multi-core

● Running in parallel with cyclictest

● Note: The goal of the experiments is to

demonstrate the tool, not to define worst values.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Experiments

Single-core experiments

42

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Experiments

Multicore experiments

43

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

tada!

Remarks

44

For more information

about this paper, like

source code, other

comments, Q&A, check its

companion page!

● The PREEMPT_RT preemption model is deterministic, and

the scheduling latency is bounded.

● The approach presented in the paper opens the door for a

new set of real-time analysis for Linux;
○ The analytical interpretation of Linux thread model developed

in this paper untight the Linux complexity, enabling the

reasoning at a more sophisticated level.

● Even though rtsl finds higher scheduling latency values,

they are still low enough to justify Linux as RTOS on the

current scenarios.

● rtsl is practical, and resolves many problems of cyclictest.
○ E.g., it can be used to point to the root causes of the latency;

○ But still can, and should, be improved:

■ Both with code, and other analysis.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

tada!

rtsl vs cyclictest? nah

45

For more information

about this paper, like

source code, other

comments, Q&A, check its

companion page!

● They help the same people
○ But they do different things

● rtls is a more specific tool
○ Covers a single aspect: sched latency

■ Covers all cases at synchronization level

● In the worst condition, even those that happened

at different points in time.

■ With strong arguments

○ Depends on kernel features (PREEMPT_RT/preemptirq...)

● cyclictest is a more generic tool
○ Covers many aspects: external activation of the timer

■ Hardware delays? Hardware bugs?

■ Without analysis - a closed-box test

○ Run on the potato that runs Linux

● rtsl adds only 4-ish us of overhead on cyclictest

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

46

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

In the next episode....

47

