4 == UNIVERSIDADE FEDERAL
DE SANTA CATARINA

e‘ Red Hat

%) Sant’Anna
Enterprise Linux o i

School of Advanced Studies — Pisa

A theorem for the RT scheduling latency

(and a measurement tool too)

Daniel Bristot de Oliveira, Daniel Casini, Rdmulo Silva de Oliveira and Tommaso Cucinotta
Principal Software Engineer

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

UNIVERSIDADE FEDERAL

pJ
Sant Anna DE SANTA CATARINA

School of Advanced Studies — Pisa

e‘ Red Hat
Enterprise Linux

Episode lll - Showing the math

Daniel Bristot de Oliveira, Daniel Casini, Rdmulo Silva de Oliveira and Tommaso Cucinotta
Principal Software Engineer

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Introduction

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Introduction

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

Experimental vs Analytical

C

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

Linux approach

e Linux was adapted to become a RTOS
e PREEMPT_RT: De facto standard

e Evaluated (mainly) with cyclictest

e Cyclictest:

o Practical: lightweight and out-of-the-box
o ltisa“closed-box” test
o No demonstration

o Does not provide evidence of “root-cause”

& RedHat
A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

Real-time analysis

L, L

e Based on the timing description of the system

e Capture all behaviors

e Precisely define the worst cases

e But depends on a precise definition of the
system

e Often overly-simplified

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Introduction

But, | like both.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Demystifying the Real-Time Linux Scheduling
Introduction Latency

Daniel Bristot de Oliveira
Red Hat, Italy

bristot@redhat.com

Daniel Casini
Scuola Superiore Sant’Anna, Italy

daniel.casini@santannapisa.it

Roémulo Silva de Oliveira
Universidade Federal de Santa Catarina, Brazil

romulo.deoliveira@ufsc.br

Tommaso Cucinotta ’

Scuola Superiore Sant’Anna, Italy

tommaso.cucinotta@santannapisa.it

—— Abstract

Linux has become a viable operating system for many real-time workloads. However, the black-box
approach adopted by cyclictest, the tool used to evaluate the main real-time metric of the kernel,
the scheduling latency, along with the absence of a theoretically-sound description of the in-kernel
behavior, sheds some doubts about Linux meriting the real-time adjective. Aiming at clarifying the
PREEMPT _RT Linux scheduling latency, this paper leverages the Thread Synchronization Model

of Linux to derive a set of properti

s and rules defining the Linux kernel behavior from a scheduling
perspective. These rules are then leveraged to derive a sound bound to the scheduling latency,
considering all the sources of delays occurring in all possible sequences of synchronization events
in the kernel. This paper also presents a tracing method, efficient in time and memory overheads,

to observe the kernel events needed to define the variables used in the analysis. This results in

an easy-to-use tool for deriving reliable scheduling latency bounds that can be used in practice.

Final

an experimental analysis compares the cyclictest and the proposed tool, showing that the
proposed method can find sound bounds faster with acceptable overheads

2012 ACM Subject Classification Computer systems organization — Real-time operating systems

Keywords and phrases Real-time operating systems, Linux kernel, PREEMPT _RT, Scheduling
latency

Digital Object Identifier 10.4230/LIPIcs.

CCRTS.2020.9

Supplementary Material ECRTS 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.1.3.

Supplement material and the code of the proposed tool is available at: https://bristot.me/ .
demystifying-the-real-time-linux-latency/

Funding This work has been partially supported by CAPES, The Brazilian Agency for Higher
Education, project Print CAPES-UFSC “Automation 4.0."

Acknowledgements The authors would like to thank Thomas Gleixner, Peter Zijlstra, Steven
Rostedt, Arnaldo Carvalho De Melo and Clark Williams for the fruitful discussions about the model,

analysis, and tool.

) Daniel Bristot de Oliveira, Daniel Casini, Rémulo Silva de Oliveira, and
Tommaso Cucinotta;

d under Creative Commons Lice cC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).

Editor: Marcus Vélp; Article No. 9; pp. 9:1-9:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik. Dagstuhl Publishing. Germany

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Episode I: getting formal

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Math side: Talk is cheap...

Show me the math! Generators of events

sched _switch_ m

4 sched_waking - B ,, o
i sched_set_state_runnable 7 O\ / \/ sched switch, suspend \\“*J'/ \\
/ \ /
| steepabe I sched set_state sleepable 0| ruanable) U ot_running sched_switch_preempt {\ ruzaize)
N e — __/ o / sched_switch_blocking

— - ~ king

sched_need_resched

schedule_entry

—»|(need_resched

21

Specifications: Sufficiency conditions

sched_switch_in local_irq_enable
sched_switch_suspend / / N\ preempt_enable_sched
sched_switch_preempt | “ e ;*””’“7 T
si]hcdd %wit(;]h mlo \/_/‘ local_irq_disable
sched_switch_oul_o A . preempt_disable_sched \‘
sched_switch_blocking S 7 N
local_irq_disable e
 preempt_ disable_sched -~ /
. e pr——
local_irq_ enable //
preempt_enable_sched -
Gredhat.

n
& RedHat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Demystifying the Real-Time Linux Scheduling Latency

Formal specification

12

Approach

Scheduling latency bound

L' < maz(Dsr, Dpoyp) + Dpuse + Dpgy,
Proof. The lemma follows by noting that -,
~ exclusive and cover all the possible s of
set_need_resched, to the time imstast i whih «
by Definition 1), and the right-hasd side of B
right-hand sides of Equations 2 3 & st
L

Theorem 8 summarizes the results desid &

» Theorem 8. The scheduling lutency sapemnund
the least positive value that fulills the fullwing

L = maz(Dsr, Dpoin) + Drass + Drsn %

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Measurement and analysis

e

1
z
:
|
i

Latency in

o338 EREE]

.38838EEEE

Latency in

Formal Specification

From formal specification to synchronization rules

Formally backed natural language arguments

L | L

e Generators

o Basic/Independent behavior
o e.g.,irg_disable/enable, scheduler call

e Translated into a set of operations

e Specifications
o Relations among generators
o e.g., necessary conditions to call the scheduler

e Translated into a set of synchronization rules

& RedHat
A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

ready AND with the
highest priority:

Scheduling latency definition

It covers the case in which
these two actions are

not a single event.

The scheduling latency experienced by an arbitrary thread T is:

It is scheduler
e the longest time elapsed between the time A in which any job of T independent.

becomes ready and with the highest priority,

e and the time F in which the scheduler returns and allows T to execute There is only one
its code. highest priority thread
on a CPU: itis the one
selected to run by the

scheduler.

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

Interference and blocking This are well established

terms in the real-time

scheduling literature:

The scheduling latency is caused by: Interference from
higher priority, blocking

. . from lower priority.
e Blocking from the current (and so lower) priority - 4

thread:

e Including scheduling.

e Interference from IRQs and NMI.

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Blocking bound

From the specification that bounds the block to a timeline

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

N

T~IRC.'I disable

Preempt disable

t IRQ enable —> tIRQ disable — EV3
Sieetibel 3z Preempt enable from sched—> EV7
Preempt disable to sched —> EV1 Schedule return—> EV6

Preempt enable IRQ enable —> EV5
Context switch—> EV4

Blocking bound

Scheduling latency: start

e The longest time elapsed between the time A in which any job of T
becomes ready and with the highest priority:

e Generalized to the need_resched event

o Works for all schedulers
m cyclictest does not work for DL with NR_TASKS > CPUs.

o Works for all conditions
m E.g,athrottled DL task after a replenishment will cause a need

resched without a wakeup.
e Has preempt and IRQ disabled as necessary conditions
o So we use the occurrence of the first necessary condition as the
starting point of the critical window.

m E.g,when preemption was disabled for the first time.

17

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

The wakeup is the only
event that causes a

need resched, and that

is why it was not used

here.

But ready means that
the task was awakened.

Red Hat

Blocking bound

Scheduling latency: end

e And the time F in which the scheduler returns and allows T to execute

its code.
o Generalized to the preempt_enable after __schedule()
m Implies that the system crossed the context switch code path.
m Context switch implies __schedule()
m Context switch needs:
e Preemptdisable to schedule as necessary condition

e irgs disabled by thread as necessary condition

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

We are looking for a

safe-bound, and so we
have to put pessimism

values.

We can latter reduce the
pessimism, but with safe

arguments.

Red Hat

How do we bound that?

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

non_atomic_events™
Cases in Section 4.2 preempt_disable_sched preempt_enable_sched
hw_local_irq_disable hw_local_irq_enable
local_irq_disable local_irq_enable
preempt_disable preempt_enable
schedule_entry schedule_exit
sched_switch_in sched_switch_in_o

Blocking bound

e F

Need resched -> ctxsw = i

sched_need_resched

sched_switch_in
sched_switch_in_o

local_irq_disable
hw_local_irq_disable

All possible cases

local_irq_enable
hw_local_irq_enable

sched_switch_in
sched_switch_in_o

schedule_exit

hw_local_irq_disable A
hw_local_irq_enable *

local_irq_enable

preempt_enable _
hw_local_irq_enable

preempt_enable_sched -
- =

2
ey
4
i,
2,
',

o

e ¢ preempt_disable_sched

o
sy
!
o
!

QI

=i
n

schedule_entryy

hw_local_irq_disable
hw_local_irq_enable

20

local_disable
local_irq_enable
A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020 hw_local_irq_disable
hw_local_irq_enable
schedule_entry

Blocking bound

Timeline and cases

All possible cases

| | Thread | | Scheduling(Thread) [| HardiR@ [NMi Preemption disabled \\\Y IRQ disabled

> j-afi-b

> i-c

Y

ii-aii-b

A A t >
—IRQ disabl — IRQ enabl IRQ disable — EV3
eante enavte Schedule c.all—> EV2 san’e Preempt enable from sched—> EV7
—Preempt disable to sched—> EV1 L Schedule return—> EV6
Preempt disable _Preempt enable IRQ enable—> EV5

Context switch—> EV4

21

& RedHat
A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Timeline and cases

Variables in the the timeline

|| Thread | | Scheduling (Thread) HardIRQ [l NMI] Preemption disabled] IRQ disabled

w
o
1]
S o
">
€ w
o
e
f?
v
lnv
o
b RS
88l
29 q
Ul
md»
v v
. C
__ ay9
_J.Q
=< &
<]
™M
>
e tu
a }
9
Qo
]
.EW
o
© g 4
a =)
o — 2
2
o
> 7
W oo
»t
[
-
= m© 2
T 0 e
Cde
htt
S O o
T £ €
e Y 0 ¢
© mmm £ o
g » 9
© Ve
o _
)] ©
Q
(]
c
o
¢}
@
|
©
(o]
Q. 9
)] 3
]
)
o
(¢} 9
= 3
,,,,,,, < R4
o
Fe)
o
£
o
(]
a
A|_

Context switch—> EV4

22

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Blocking variables

e Dpoip: preemption or interrupts disabled to

postpone the scheduler; In the model, the

e Dpraie: preemption and interrupts enabled, as a preemption control is

. .) specialized into two
transient state from poid to psd; when scheduling

different operations: to

a new highest priority thread. postpone the scheduler

e Dpsb: preemption disable to schedule; (the most known
e Dsrt: delay caused by the scheduling tail; the “non behavior) or to protect the

return” point in which a new arrived task will have to execution of the

wait for the current scheduling operation to finish —seiseiiz() unelen e

i recursion.
before scheduling.

23

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Blocking bound

Timeline and cases

Variables in the the timeline

|| Thread | | Scheduling (Thread) HardIRQ [l NMI] Preemption disabled] IRQ disabled

w
o
1]
S o
">
€ w
o
e
f?
v
lnv
o
b RS
88l
29 q
Ul
md»
v v
. C
__ ay9
_J.Q
=< &
<]
™M
>
e tu
a }
9
Qo
]
.EW
o
© g 4
a =)
o — 2
2
o
> 7
W oo
»t
[
-
= m© 2
T 0 e
Cde
htt
S O o
T £ €
e Y 0 ¢
© mmm £ o
g » 9
© Ve
o _
)] ©
Q
(]
c
o
¢}
@
|
©
(o]
Q. 9
)] 3
]
)
o
(¢} 9
= 3
,,,,,,, < R4
o
Fe)
o
£
o
(]
a
A|_

Context switch—> EV4

24

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

25

Interference bound

Timeline and cases

IRQ and NMl interference

|| Thread | | Scheduling (Thread) || HardiR@ [NMi Preemption disabled \\\Y IRQ disabled

NM (L) I

\

|'RQ (L)

Dpsd

Dpaie | Dst

A
LIRG) disable

Preempt disable

A

— IRQ enable Schedule call—> EV2 IRQ disable — EV3

Preempt disable to sched—> EV1
Preempt enable

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

} >

LPreempt enable from sched—> EV7
—Schedule return—> EV6

~IRQ enable—> EV5

Context switch—> EV4

Scheduling latency bound

And the scheduling latency bounds to:

The bound considers all
possible cases. Note that
the Latency L is present in

both sides of the equation.

So, L is bounded by the

L = max(DsT, DpoiD) + DPAIE + Dpsp + INMI(L) + I'RO(L) e

fulfilling the equation (like
on RTA).

26

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Scheduling latency bound

Timeline and cases

IRQ and NMl interference

|| Thread | | Scheduling (Thread) || HardiR@ [NMi Preemption disabled IRQ disabled

M (L) I

[T

vz

Dpsd

Dpaie | Dst

LIRQ disable

Preempt disable

A
— IRQ enable

Schedule call—> EV2 th disable —> EV3
Preempt disable to sched—> EV1

Preempt enable

L = max(DsT, Dpoip) + DPAIE + Dpsp + INMI(L) + I'RO(L)

27

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

A >

LPreempt enable from sched—> EV7
—Schedule return—> EV6

~IRQ enable—> EV5

Context switch—> EV4

Scheduling latency bound

And the scheduling latency bounds to:

The bound considers all
possible cases. Note that
the Latency L is present in

both sides of the equation.

So, L is bounded by the

L = max(DsT, DpoiD) + DPAIE + Dpsp + INMI(L) + I'RO(L) e

fulfilling the equation (like
on RTA).

28

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Interrupts characterization

Interrupts are workload dependent

This topic was heavily

e Instead of proposing “the best” interrupt discussed at the Real-time
Micro Conference (inside

Linux Plumbers) in 2019,

more info here:

characterization, the rtsl reports the scheduling
latency based on some well-known

characterizations:
o No interrupt
o Worst single interrupt
o Single occurence of all interrupts
o Sporadic
o Sliding window (Author’s preferred)
o Sliding window with oWCET

29

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Episode ll: getting practical
(and efficient)

31

rt_sched_latency toolkit

A practical scheduling latency estimation tool

Method and challenges

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Based on the latency bound
The latency bound is based on the model

The modelis based on tracing of events
o but high frequency events
m hundreds MB/sec/CPU
Challenges:

To minimize the (runtime) overhead

Work out-of-the-box

A toolkit

Rtsl: a measurement tool

tracer

 E

| b

. eBPF/BCC]|

tracepoints

32

eBPF/BCC

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

| tracer) — analysis |
¥ tracer W =~ analysis |
rtsl_datastrace_file N tracer B ' analysis |

= I I U B —

p

- er_cpu_de

per_cpu_db

Chart
per_cpu_db — |||||||

Kernel space:
- Rtsl events

User space:

- Rtsl command
Python

Has three commands:

The record command
saves the trace data;

The report command
process the trace and
does the analysis.

The stats command

produces a histogram of

the thread variables

Red Hat

rt_sched_latency toolkit

rtsl events

Low overhead tracer

Kernel

tracepoints

eBPF/BCC

33

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

C

Hooks to events

o Filters the high frequency trace

o Doingin-kernel processing

o Use a knob on debugfs to enable the tracing
For blocking variables:

o Reports all values or only the discover of new

max values
For IRQ and NMI:
o Reports one event for each occurrence
Discounts the interference:

o eg, IRQinterference on a poid & RedHat

Experiments

Kernel changes

The parser was developed

e The rtsl events depends on: as a kernel module. In this
way | can leave it off tree...

but it would be better to

N N interrupts BN Worst Single imteenge

o preemptirq tracepoints
o Soitneeds a “debug/trace” kernel (yeah...)

e g have it in.
o Butlife finds a way

: ~ ..l e Annotations on the preempt_disable to sched
~ . o No functional changes If we get it in, we can

o NMI tracepoints change the debugfs for
the tracefs.

o Orchange in the current one to the extreme points
of the handler

2.a)15

26 Workstation expet et 5N

:
D ~+h avstems Tus 8

34

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl record

Trace recording

L L

]
tracer
]
rtsl _data/trace_file
Kernel - -
4 =
= -
< -
[o R
8 -
@ - L
-
]

35

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Captures the values for the variables
o Only new max values for thread variables

o Saving them into a trace file
Calls real tracers to do the tracing:

o Perf

o Ftrace
Controls the trace section

Saves the trace in the rtsl_data/ dir

rt_sched_latency toolkit

rtsl report

Trace processing

e Analyzes the trace!
o Allin user-space

e Most of the tool is done in python
AR Saclals o Easy to extend the analysis (researchers like)
tracer analysis

rtsl_data/trace_file tracer analysis e Parses the trace file in parallel

=

o Per cpu trace parsing (e.g., perf script-c $...)

>
=
]
<
@
)

per_cpu_db o Generates per-cpu database with the data

per_cpu_db m Inthe rtsl_data/ dir

W

per_cpu_db .
o Uses a C trace-plugin create the database

e Database in a sqlite3 file
36

& RedHat
A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

rt_sched_latency toolkit

rtsl report

Data processing

tracer analysis
tracer analysis
rtsl_data/trace_file tracer analysis

iy

per_cpu_db

>
=1
o
<
)
@

per_cpu_db

W

per_cpu_db

37

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

C

e The analysis is done on the database

o IRQ analysis needs to read data back and forth

o Trace can reach tens of GB/per-cpu
e The analysis is done in parallel
e Two outputs:

o Textual output
o Charts
m Using matplotlib

rt_sched_latency toolkit

rtsl report output

Textual output

Interference Free Latency:
paie is lower than 1 us -> neglectable S
; : continuing....
latency = max(poid, dst) + paie + psd & iine windous
42212 = max(22510, 19312) + 0 + 19702 & ;
, Window: 42212
Cyclictest: NMI : 0
Latency = 27000 with Cyclictest 33: 16914
No Interrupts: 35: 14588
Sporizzi?cy = 42212 with No Interrupts 936 50728
INT: OWCET OMIAT . 226 3299
Window: 97741
WAL 9 0 236: 21029 <- new!
33: 16914 257130 Witdews 98(.)42 '
35: 12913 1843 <- oWCET > oMIAT) ;
236: 20728 1558 <- OWCET > oMIAT Converged:
546 3299 1910391 Latency = 98042 with Sliding Window
Did not converge.

38

& RedHat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

39

rt_sched_latency toolkit

rtsl report output

Chart output

B Cyclictest W No Interrupts W Worst Single Interrupt m Single (Worst) of Each Interrupt
400

B Sliding Window

Sliding Window with oWCET

350 A

w

o

o
1

250 A
200 A
150 -
100 -

Latency in microseconds

Ul
o
1

o
1

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

0 4 8

rt_sched_latency toolkit

C

Kernel

tracepoints

eBPF/BCC

40

rtsl stats

Online view

C

» Monitor the thread variables

o poid/psd/dst/paie...
» UsesBCC

o Saves histograms in kernel

o Display in user-space

eBPF/BCC o Canplotdata

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Experiments

-------- ra TL @l

[
N N interrupts BN Worst Singie e g —
e —— g

o

1.a) ldle
o
[

2.a) 15 min.

26 Workstation expet jments SINg

B IS
D~+h svstellls 3385

4

Experiments

Scheduling latency measurements on two systems:
o workstation: eighth CPUs

o server: twelve CPUs server
Experiments:
o Single-core
m Different duration
m Different workload

o Multi-core

Running in parallel with cyclictest
Note: The goal of the experiments is to

demonstrate the tool, not to define worst values.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

The experiments passed

by the artifact evaluation!

Red Hat

42

Experiments

Single-core experiments

I Cyclictest B No Interrupts B Worst Single Interrupt

I Single (Worst) of Each Interrupt

B Sliding Window

Sliding Window with oWCET

,, 180 180 180
T 160 4 160 - 160 -
[
o
S 1401 140 - 140 -
g 120 120 1 120
-2 1001 100 1 100

80 A 80

60 - 60 -

40 - 40 -

20 A 20

0- - 0- .
1.a) Idle 1.b) CPU Intensive 1.c) I/O Intensive
180 180 180

(7]
'g 160 - 160 - f 160 f
g 140 - 140 1 467 140 801
£ 1201 120 120
.
Y 100 100 - 100 -

80 A 80 -

60 - 60 -

40 - 40

20+ 20

0- 0-

2.a) 15 min.

2.b) 60 min.

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

2.c) 180 min.

43

Experiments

Multicore experiments

I Cyclictest B No Interrupts B Worst Single Interrupt B Single (Worst) of Each Interrupt B Sliding Window Sliding Window with oWCET
wn 300 300 300
©
C
8 250 A 250 A 250 A '
8 2944
o 200 A 200 A 200 A
9
€ 150 - 150 - 150 -
k=
>100 A 100 100
@)
c
2 50 I II IIIIIIIIlIlll“l 50 1 I IIIIIIIIIIIIIIII 50
©
—
0- 0- 0-

3.a) Workstation Idle

3.b) Workstation CPU Intensive

3.c) Workstation I/O Intensive

0

4 8 0 4 8
4.a) Server 1/O Intensive

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

1

1900

0 4 8 0 4

8

tada!

Remarks

For more information

e The PREEMPT_RT preemption model is deterministic, and about this paper, like

the scheduling latency is bounded. source code, other
_ comments, Q&A, check its
e The approach presented in the paper opens the door for a

companion page!

new set of real-time analysis for Linux;

A
..l o The analytical interpretation of Linux thread model developed
in this paper untight the Linux complexity, enabling the

1. Idle
reasoning at a more sophisticated level.

e Even though rtsl finds higher scheduling latency values,
they are still low enough to justify Linux as RTOS on the

2.2) current scenarios.

' Norkstation experiments S¥ | ! .
26 Worksta e rtslis practical, and resolves many problems of cyclictest.

o+ cvstems rus the ST o E.g., it can be used to point to the root causes of the latency;
o But still can, and should, be improved:

m Both with code, and other analysis.
44

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

tada!

rtsl vs cyclictest? nah

For more information

about this paper, like

e They help the same people

o But they do different things source code, other

. e comments, Q&A, check its
e rtlsis a more specific tool

] companion page!

o Covers asingle aspect: sched latency

. ..l m Covers all cases at synchronization level

: e Inthe worst condition, even those that happened
at different points in time.
m With strong arguments
o Depends on kernel features (PREEMPT_RT/preemptirg...)

e cyclictestis a more generic tool
2.3) 15 min.

| e o Covers many aspects: external activation of the timer
26 Workstation eXpeias

m Hardware delays? Hardware bugs?

n I8
D~+h qusiellld 235

m Without analysis - a closed-box test

o Run on the potato that runs Linux
us e rtsl adds only 4-ish us of overhead on cyclictest

Red Hat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

Thankyou ..o

Red Hat is the world’s leading provider of enterprise B youtube.com/user/RedHatVideos

open source software solutions. Award-winning

- : , f facebook.com/redhatinc
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.
’ twitter.com/RedHat

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

In the next episode....

A theorem for the real-time scheduling latency (and a measurement tool too) - LPC 2020

