
openat2(2)
what’s next?

Aleksa Sarai (SUSE)
cyphar@cyphar.com

mailto:cyphar@cyphar.com

Current Status

openat2(2) in Linux 5.6.
➢ Only main missing pieces are related to magic-link hardening.
➢ Automount or “remote fs” restrictions might be useful.

libpathrs still under active development.
➢ Experimental C, Python and Go bindings.
➢ Still need to improve C API wrt multi-threading.
➢ Goal: Have first real program (umoci) ported by end-of-year.

https://github.com/openSUSE/libpathrs
https://github.com/opencontainers/umoci

Remaining Issues

procfs is still a minefield.
➢ We require /proc but we can’t trust it in containers.
➢ I have some proposals to work around this.
➢ (I still think O_EMPTYPATH is a good idea.)

Magic-links still allow too much reopening.
➢ Being able to re-open /proc/$pid/exe for writing is silly.
➢ Based on my tests, no programs break with restrictions.

(Less Important)

Remaining Issues

Can userspace safely rely on mount behaviour?
➢ Mainly, mounts on top of existing file descriptors and re-opening.
➢ Important to make sure libpathrs actually provides protection.
➢ Should we just add some code to VFS selftests?

○ Probably not a bad thing to do anyway…

readlinkat2(AT_EMPTY_PATH)
➢ Given an open O_PATH symlink, we cannot currently readlink it.
➢ Does anyone mind if we add this?

/proc
(Background)

We can now block most of the things we want to avoid.
➢ openat2(RESOLVE_*) is enough for most operations.
➢ With “safe” handles you can do most VFS operations.

However, using /proc safely can become complicated.
➢ libpathrs (currently) requires /proc operations in implementation.
➢ Container runtimes need to fiddle with procfs files.
➢ How do we make sure we are accessing the right procfs file?
➢ Note that containers have some freedom to configure their mounts.

/proc
(The Easy-ish Stuff)

/proc is the root of a procfs.
➢ fstatfs(2) as well as PROC_ROOT_INO (1).
➢ Once we grab a handle and verify it, we’re golden.

/proc/self/attr/exec is the label for $pid.
➢ openat2(RESOLVE_NO_XDEV|RESOLVE_NO_SYMLINKS).
➢ Without openat2(2), not possible without races.
➢ (Note that /proc/$pid/environ and /proc/$pid/sched exist.)

/proc
(The Hard Stuff)

Being sure that /proc/self/{fd/$n,exe} is legit.
➢ Not currently possible, even with openat2(2).
➢ Cannot use RESOLVE_NO_XDEV (blocks most magic-links).
➢ Attackers can bind-mount o̼͆ͬn̄̓ t̊ͬ ͮö͊ͯ̓ͨṕ ̓õ͙͇̚f̊ ͬ͒ ̓ ̒s̩͈̏y̩͇m̜͉͔ḷ̝͋ı͚͋n͍͈̈͆̓̉ͦ͒ḵ̲̰́s̊͌.
➢ Can’t do readlink-based lookups because we need nd_jump_link().
➢ We need these to be safe for container runtimes and libpathrs.

/proc
(Proposal 1 -- “Add another hack.”)

openat2(RESOLVE_ONLY_MAGICLINKS).
➢ Only permit resolution which calls nd_jump_link().
➢ This is sufficient to solve our procfs troubles.

○ Lookup parent of magic-link, follow the magic-link, continue.
➢ But this is clearly a hack to solve only this one problem.

○ Semantics will be strange no matter what we pick.
○ Useless for “general purpose” open-this-file problems.
○ Still fundamentally depends on procfs.

/proc
(Proposal 2 -- “Distinct Replacement APIs.”)

We use procfs magic-links for completely different things.
So just introduce new procfs-free APIs for each problem.
➢ /proc/self/fd/$n → openat($n, "", O_EMPTYPATH).
➢ /proc/self/exe → process_get_resource(-1, PROC_EXE);

○ Ditto for cwd, root, ns/*, et al.
➢ Lots of extra APIs and work -- is it worth it?

○ Plenty of bike-sheds to paint.
○ Might be good to cherry-pick the ones that are actually useful.

➢ What should we do …
○ … for /proc/self/map_files?
○ … if another magic-link is added?
○ … about magic-links outside of procfs?

/proc
(Proposal 3 -- “Process-local procfs.”)

Bypass the whole “is /proc safe” question.
➢ API to get a fresh procfs handle that is only visible to the program.
➢ Unprivileged fsopen("procfs") with subset=pidfs,hidepid=4.

○ … or something more fruity like AT_FDPROCSELF (a-la AT_FDCWD).
○ Make sure we don’t allow bypassing mount_too_revealing().

➢ Seems like the “neatest” solution:
○ Solves the whole “is /proc mounted” problem simultaneously.
○ Makes lookups simpler and a program could cache this handle.
○ However, doesn’t help us with non-procfs magic-links.

➢ If we had “subset=self” you could pass these handles around.

/proc
(3… 2… 1… FIGHT!)

1. “Add another hack.”
➢ openat2(RESOLVE_ONLY_MAGICLINKS).

2. “Distinct Replacement APIs.”
➢ /proc/self/fd/$n → openat2(O_EMPTYPATH).
➢ /proc/self/{exe,cwd,root} → get_process_fd(pidfd).
➢ Figure something out for everything else…

3. “Process-local procfs.”
➢ AT_PROCSELF; or
➢ Unprivileged fsopen(2) for procfs with subset=pid,hidepid=4.

Bonus: Magic-links

In 2019, I proposed magic-link re-opening restrictions.
➢ Patch on LKML (dropped from the openat2 patchset) and LPC talk.
➢ Recap: Allow re-opening of a magic-link if the original handle has an

f_mode which is a superset of the requested mode (O_PATH is special
and copies magic-link modes or is rwx if not a magic-link).
○ Add an upgrade_mask to openat2(2) for O_PATH.

➢ Is a change in behaviour, but doesn’t appear to break Linux systems.

Any objections to me re-posting this patch?

https://lore.kernel.org/lkml/20190930183316.10190-2-cyphar@cyphar.com/
https://youtu.be/LN2CUgp8deo?t=9997

Bonus: Mount Behaviour?

Currently, mounts don’t affect existing handles.
➢ (With the obvious exception of mounts to subdirectories.)
➢ Can userspace rely on this behaviour not changing?

○ libpathrs is designed around re-opening file descriptors in a
context where we assume a handle is safe after we’ve checked it.

○ Not clear how widely-exercised this behaviour is today.
○ Would breakages be noticed? Should we add more selftests?

Bonus: readlinkat2(...)

We currently cannot readlink(2) an O_PATH symlink.
➢ readlink("/proc/self/fd/$n") does exactly what you expect.
➢ Would allow us to avoid having to do racy retry loops for readlink.
➢ Not strictly necessary for libpathrs:

○ “Easy” to work around for “legacy” lookups.
○ Plus we now have openat2(2) so it’s less critical.

➢ But it seems like an omission.
○ We’d have to add readlinkat2(2) -- no flags argument.

