A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

openat2(2)

what's next?

Aleksa Sarai (SUSE)
cyphar@cyphar.com

mailto:cyphar@cyphar.com

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Current Status

openat2(2) in Linux 5.6.

> Only main missing pieces are related to magic-link hardening.
> Automount or “remote fs” restrictions might be useful.

libpathrs still under active development.

> Experimental C, Python and Go bindings.
> Still need to improve C APl wrt multi-threading.
> Goal: Have first real program (umoci) ported by end-of-year.

https://github.com/openSUSE/libpathrs
https://github.com/opencontainers/umoci

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Remaining Issues

procfs is still a minefield.
> We require /proc but we can't trust it in containers.

> | have some proposals to work around this.
> (I still think O_EMPTYPATH is a good idea.)

Magic-links still allow too much reopening.
> Being able to re-open /proc/$pid/exe for writing is silly.
> Based on my tests, no programs break with restrictions.

§ (Less Important)
\ Remaining Issues

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Can userspace safely rely on mount behaviour?

> Mainly, mounts on top of existing file descriptors and re-opening.
> |Important to make sure libpathrs actually provides protection.

> Should we just add some code to VFS selftests?

o Probably not a bad thing to do anyway...

readlinkat2(AT_EMPTY_PATH)
> Given an open 0_PATH symlink, we cannot currently readlink it.

> Does anyone mind if we add this?

A\

LINUX
PLUMBERS

CONFERENCE

August 24-28, 2020

>

/proc
(Background)

We can now block most of the things we want to avoid.
openat2(RESOLVE_*) is enough for most operations.

> With “safe” handles you can do most VFS operations.

However, using /proc safely can become complicated.

>

vy VYV

libpathrs (currently) requires /proc operations in implementation.
Container runtimes need to fiddle with procfs files.

How do we make sure we are accessing the right procfs file?
Note that containers have some freedom to configure their mounts.

/proc
(The Easy-ish Stuff)

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

/proc is the root of a procfs.
> fstatfs(2) as well as PROC_ROOT_INO (1).
> Once we grab a handle and verify it, we're golden.

/proc/self/attr/exec is the label for $pid.

> openat2(RESOLVE_NO_XDEV|RESOLVE_NO_SYMLINKS).

> Without openat2(2), not possible without races.

> (Note that /proc/$pid/environ and /proc/$pid/sched exist.)

/proc
(The Hard Stuff)

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Being sure that /proc/self/{fd/$n,exe} is legit.

> Not currently possible, even with openat2(2).

Cannot use RESOLVE_NO_XDEV (blocks most magic-links).

Attackers can bind-mount &7 t8p §F$¥m[jﬁk§.

Can't do readlink-based lookups because we need nd_jump_link().
We need these to be safe for container runtimes and libpathrs.

YV VYY

/proc
(Proposal 1 -- “Add another hack.”)

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

openat2(RESOLVE_ONLY_MAGICLINKS).
> Only permit resolution which calls nd_jump_1link().

> This is sufficient to solve our procfs troubles.

o Lookup parent of magic-link, follow the magic-link, continue.
> But thisis clearly a hack to solve only this one problem.

o Semantics will be strange no matter what we pick.

o Useless for “general purpose” open-this-file problems.

o Still Fundamentally depends on procfs.

/proc
(Proposal 2 -- “Distinct Replacement APIs.”)

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

We use procfs magic-links for completely different things.

So just introduce new procfs-free APIs for each problem.

> [proc/self/fd/S$n — openat($n, "", O_EMPTYPATH).
> [proc/self/exe — process_get resource(-1, PROC_EXE);
o Ditto for cwd, root, ns/*, et al.
> Lots of extra APIs and work --is it worth it?
o Plenty of bike-sheds to paint.
o Might be good to cherry-pick the ones that are actually useful.
> What shouldwedo...
o ...for /proc/self/map_files?
o ...iFanother magic-link is added?
o ...about magic-links outside of procfs?

& Jproc
LINUX (Proposal 3 -- “Process-local procfs.”)
PLUMBERS

CONFERENCE

Bypass the whole “is /proc safe” question.
> APl to get a fresh procfs handle that is only visible to the program.
> Unprivileged fsopen("procfs") with subset=pidfs,hidepid=4.
o ...or something more fruity like AT_FDPROCSELF (a-la AT_FDCWD).
o Make sure we don't allow bypassing mount_too_revealing().
> Seems like the “neatest” solution:
o Solves the whole “is /proc mounted” problem simultaneously.
o Makes lookups simpler and a program could cache this handle.
o However, doesn’t help us with non-procfs magic-links.
> |f we had "subset=self” you could pass these handles around.

/proc
(3... 2... 1... FIGHT!)

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

“Add another hack.”
> openat2(RESOLVE_ONLY_ MAGICLINKS).

2. "Distinct Replacement APIs.”
> [proc/self/fd/Sn — openat2(0_EMPTYPATH).
> [proc/self/{exe,cwd,root} — get process_fd(pidfd).
> Figure something out for everything else...

3. “Process-local procfs.”

> AT_PROCSELF; or
> Unprivileged fsopen(2) for procfs with subset=pid,hidepid=4.

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Bonus: Magic-links

In 2019, | proposed magic-link re-opening restrictions.
> Patch on LKML (dropped from the openat2 patchset) and LPC talk.
> Recap: Allow re-opening of a magic-link if the original handle has an
f_mode which is a superset of the requested mode (0_PATH is special
and copies magic-link modes oris rwx if not a magic-link).
o Add an upgrade_mask to openat2(2) for O_PATH.
> Is achange in behaviour, but doesn’t appear to break Linux systems.

Any objections to me re-posting this patch?

https://lore.kernel.org/lkml/20190930183316.10190-2-cyphar@cyphar.com/
https://youtu.be/LN2CUgp8deo?t=9997

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Bonus: Mount Behaviour?

Currently, mounts don't affect existing handles.

> (With the obvious exception of mounts to subdirectories.)

> Can userspace rely on this behaviour not changing?

o libpathrs is designed around re-opening file descriptors in a
context where we assume a handle is safe after we've checked it.

o Not clear how widely-exercised this behaviour is today.

o Would breakages be noticed? Should we add more selftests?

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

>
>
>

Bonus: readlinkat2(...)

We currently cannot readlink(2) an 0_PATH symlink.

readlink("/proc/self/fd/Sn") does exactly what you expect.
Would allow us to avoid having to do racy retry loops for readlink.
Not strictly necessary for libpathrs:

o "Easy” to work around for “legacy” lookups.

o Plus we now have openat2(2) so it’s less critical.

But it seems like an omission.
o We'd have to add readlinkat2(2) -- no flags argument.

