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Scheduling Platforms
● Kubernetes

○ command: app.sh [args] in yaml file

● Job scheduler
○ job_submit app.sh [args]

Retry the same command in case of failures

Tight security, no root



Goal: C/R in containerized environments

App

Container A Container B

Checkpoint Restore

Remote Storage
(e.g. AWS S3, GCS)

No access to host



CRIU is only an engine
● Not ergonomic for the end-user. Need to be knowledgeable about the options

○ --cpu-cap, --shell-job, --tcp-close, --empty-ns net, --skip-in-flight, --ext-unix-sk

● Compilation/installation can be difficult on certain platforms
○ 10+ dependencies

● Needs root
● No file system C/R

○ Need synchronization with CRIU

● No image compression, upload/download



FastFreeze: Checkpoint/Restore, batteries included
● Easy to use, compatible with scheduling platforms
● Non-root CRIU
● Virtualize CPUID
● Upload/Download of images to/from remote storage
● C/R file system



FastFreeze: Checkpoint/Restore, batteries included
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● C/R file system

See talk on Fast Checkpointing
with criu-image-streamer



Easy to use



Installation

Add this to a Dockerfile

RUN curl -SL https://github.com/.../fastfreeze.tar.xz | tar xJf - -C /opt; \

    ln -s /opt/fastfreeze/fastfreeze /usr/local/bin; \

    fastfreeze install



Usage
1. Run application through fastfreeze:

○ fastfreeze run --image-url s3://ff/exec1.img -- ./app.sh [args…]

2. Checkpoint the running app:
○ fastfreeze checkpoint

Saves the app state in S3
E.g. Kubernetes pre-stop hook, periodic checkpoints

3. Restore the app:

 Same command as 1. 
run checks for the image presence, and restore the app if found
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CRIU without privileges
(in the root user namespace)



Previous Work
LPC 2018 Radoslaw Burny: Securely migrating untrusted workloads with CRIU 

LPC 2019 Adrian Reber: CRIU and the PID dance

LPC 2019 Kamil Yurtsever et al: Update on Task Migration at Google Using CRIU



CAP_SYS_ADMIN
● /proc/sys/kernel/ns_last_pid / clone3()
● /proc/pid/map_files/*
● /proc/self/exe
● Time namespace



/proc/sys/kernel/ns_last_pid / clone3()
● Control PID of next process
● Requires CAP_SYS_ADMIN in associated PID namespace
● Workaround:

○ clone()+exit() until needed, cycle through 100,000 PID/sec
https://github.com/twosigma/set_ns_last_pid

● What if we could create a user namespace?
○ Create user+PID namespace, no privileges needed
○ Mount /proc

■ Bad news, if /proc/sys is mounted read-only, we can’t mount /proc
■ Standard setup in Docker and Kubernetes

https://github.com/twosigma/set_ns_last_pid


/proc/pid/map_files/*
● Allow to open an mmap file that has been deleted
● open() requires CAP_SYS_ADMIN in the root user namespace
● Workaround:

○ We have ptrace access to the process that has the file mmaped
We can dump the file content anyways

○ Don’t delete files

● Lengthy email conversation to remove the security check
○ /proc/pid/fd/* doesn’t need CAP_SYS_ADMIN
○ Possibly because dma-buf being mmaped, kdbus (2015)
○ https://lore.kernel.org/patchwork/patch/1252086/

https://lore.kernel.org/patchwork/patch/1252086/


/proc/self/exe
● Points to the execve() first argument
● Changing it requires CAP_SYS_ADMIN in the local user namespace
● Workaround:

○ Use fork+execve+ptrace to spoof /proc/self/exe as demonstrated with 
https://github.com/nviennot/run_as_exe

○ App can cache /proc/self/exe on boot

● Long email history starting in 2012 to remove the check
○ See commit message ebd6de681238
○ /proc/self/exe offers no guarantees but security/{audit, tomoyo} uses it. Careful.

https://github.com/nviennot/run_as_exe


Time namespace
● Thread.sleep(1000) in the JVM:

○ Sleep until absolute time clock_gettime(CLOCK_MONOTONIC) + 1000

● Requires CAP_SYS_ADMIN in the local user namespace
● Workaround:

○ Interpose with LD_PRELOAD all calls that use CLOCK_MONOTONIC abs time
○ https://github.com/twosigma/libvirttime
○ Harder than you think

https://github.com/twosigma/libvirttime


CAP_SYS_ADMIN
● /proc/sys/kernel/ns_last_pid / clone3()
● /proc/PID/map_files
● /proc/self/exe
● Time namespace



CAP_CHECKPOINT_RESTORE
● /proc/sys/kernel/ns_last_pid / clone3()
● /proc/PID/map_files
● /proc/self/exe
● Time namespace

● Landed Aug 4th, in Linux 5.9-rc1
● Efforts by: Adrian Reber, Christian Brauner, myself



CPUID Virtualization



CPU feature virtualization
● Problem:

○ App boots on a AVX-512 capable host
○ Checkpoint/Restore app on a non-AVX capable host
○ Crash

● Solution:
○ Hide advanced CPU features
○ Don’t mix instance types
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CPU feature virtualization
● Interpose ELF loader /lib64/ld-linux-x86-64.so.2
● Tell the kernel to trap CPUID instruction and generate a SIGSEGV
● When app invokes CPUID, emulate it

https://github.com/twosigma/libvirtcpuid

Future work: CPUID namespace
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https://github.com/twosigma/libvirtcpuid


FastFreeze benefits and vision
● Make C/R mainstream
● Make cheap preemptible VMs more accessible

Avoid wasting resources
● Vision: make migration part of the stack

○ Warm boots (layer on top of a docker image)
○ Memory ballooning
○ Topology optimization at runtime

Collocate compute and storage at runtime

https://github.com/twosigma/fastfreeze
Nicolas.Viennot@twosigma.com

https://github.com/twosigma/fastfreeze

