
Linux Kernel Graphics CI
Standardizing the testing of Linux’s graphics subsystem

Martin Peres - Intel Open Source Graphics Center
X.org Developer Conference 2019 - Montréal, Canada

Why testing has to be standardized?
Benefits of a standardized testing environment

▪ Linux’s UAPI needs to be backwards compatible, so
better make sure it is used correctly!

3

Why standardize?

@twitter handle

Source: https://xkcd.com/1172/

▪ Manual testing is:
▪ Hard to document/reproduce
▪ Subjective
▪ Unable to meet the rate of change of Linux

▪ Automated testing brings consistency:
▪ Documents the expected behaviour
▪ Enables enforcement of this behaviour
▪ Provides documentation on how to use features

https://xkcd.com/1172/

Test suites
Standardizing behaviour between drivers and HW generations

▪ Started as Intel GPU Tools in 2009 as a repository for i915-related tools

▪ Grew to become a test suite for Intel Hardware

▪ Expanded focus to entire DRM subsystem
▪ Hardware-agnostic tests got reworked to run on other drivers
▪ Hardware-specific tests got moved to their own folders (i915, amdgpu, vc4, v3d)

▪ Now the official test suite of new UAPI for Linux’s DRM subsystem

5

IGT GPU Tools - Testing the kernel UAPI

mupuf

https://www.kernel.org/doc/html/v5.2/gpu/drm-uapi.html#testing-requirements-for-userspace-api

▪ Displays are increasingly complex:
▪ Hotplugging of displays, connectors (DP MST), and GPUs (USB / thunderbolt)
▪ Unreliable cables (link status handling)
▪ Plenty of HW planes, but with weird limitations (alignments, memory bandwidth)

▪ Need a way to check that our userspace is able to use the latest features:
▪ Graceful degradation in case of missing features or exceeding limits

▪ We need to write a HW-agnostic test suite: Let’s use VKMS?

6

Testing the userspace conformance

mupuf

HW-assisted testing
Standardizing the hardware needed for validation

▪ Devices under test need to reboot on the tested kernel which may fail to boot:
▪ Power cutters can be used if the machine fails to show up
▪ Grub-reboot can be used to fallback to a safe kernel then collect the logs

8

▪ Display connectors:
▪ Many display standards and features, exposed through EDIDs / regs
▪ Can be hotplugged, multiplexed, and cary non-graphics streams (Audio, USB, ...)
▪ Mostly require external hardware for validation

Linux Graphics drivers are tough to validate

mupuf

▪ Open Source/Hardware ChromeOS validation vehicle for Video, Audio, Network
▪ Integration in IGT by Lyude (Red Hat), extended by Paulk and Emersion (Intel)
▪ Now can handle most of the DP/HDMI conformance testsuite

9

Google’s Chamelium - Connector validation

mupuf

Chamelium is unsuitable outside of the corporate world

▪ Problems:
▪ Not cheap: ~$500 per unit (requires a beefy FPGA)
▪ Outdated receivers: DP 1.2, HDMI 1.4
▪ No support for panels (eDP / DSI), nor thunderbolt / type-C displays
▪ Impossible to source receivers as a John Doe

https://www.chromium.org/chromium-os/testing/chamelium

Testing infrastructures
Standardizing workflows to simplify contributions

11

Current Linux testing infrastructures

mupuf

Infrastructure Trigger Latency Test Suites Arch Response

0-day post-merge Weeks Build, boot x86 Email

Kernel CI post-merge Hours Build, boot Mostly
ARM

Email, Web
UI

Linux Kernel
Functional Testing

post-merge Hours Build, boot, selftests,
non-IGT testsuites

ARM, x86 Email, Web
UI

Intel GFX CI pre/post
merge

Hours Build, boot, IGT, i915/DRM
selftests, Piglit

Intel iGPU
from 2004+

Email, Web
UI

Automated testing is nice, but we live in a jungle of inconsistent reports!

12

Generic testing flow

▪ Trigger: creates a job when a
certain condition is met

▪ Job: run’s metadata and results
▪ Scheduler: decides which job

should be executed next
▪ Executor: executes a test suite

container on a HW pool
▪ Reporting: Filters the results then

reports back to developers. May
trigger a new job in response.

See gfx-ci/i915-infra#39 for more information.
Will move to gfx-ci/documentation when agreed.

mupuf

https://gitlab.freedesktop.org/gfx-ci/i915-infra/issues/39
https://gitlab.freedesktop.org/gfx-ci/documentation

▪ Well-defined interfaces promote standardization and collaboration:
▪ Make it easy for sub-projects to discuss and cross-report bugs
▪ Reduce the cost of development / maintenance of the testing infra

13

Defining clear interfaces

mupuf

▪ Challenges:
▪ Test suites need to all look the same from an executor PoV. Containers?
▪ Test results need to be stored in common format. Piglit?
▪ Known failures need to be identified and maintained through:

▪ Commit IDs via automated bisecting (MesaCI style)
▪ Bug via manual or automatic filter creation (CI Bug Log style)

▪ Individual users need to be able to check if failures are known or not
▪ Reporting needs to be somewhat consistent between projects

https://intel-gfx-ci.01.org/

https://intel-gfx-ci.01.org/

▪ Documentation: Defining the objectives and architecture of a CI system

▪ CI Bug Log: Results visualization, comparisons, quality metrics, bug tracking

▪ EzBench: Automated bisecting of unit tests, performance, and rendering

▪ i915-infra: Good parts of the Intel GFX CI which are not yet split

▪ Tracie: Reference-frame-based rendering checks for Mesa

15

Freedesktop GFX-CI projects

mupuf

https://gitlab.freedesktop.org/gfx-ci/documentation
https://gitlab.freedesktop.org/gfx-ci/cibuglog
https://gitlab.freedesktop.org/gfx-ci/ezbench
https://gitlab.freedesktop.org/gfx-ci/i915-infra
https://gitlab.freedesktop.org/gfx-ci/tracie

