
X.Org Developer’s Conference 2019
Contribution ID: 37 Type: not specified

A case study on frame presentation from user space
via KMS

Thursday 3 October 2019 11:40 (45 minutes)

Traditionally, an application had very little control about when a rendered
frame is actually going to be displayed. For games, this uncertainty can cause
animation stuttering [0]. A Vulkan prototype extension was added to address
this problem [1].

XR (AR/VR) applications similarly need accurate knowledge of presentation
timestamps in order to predict the head-pose for the time a frame will be
displayed. Here, inaccuracies lead to registration errors (i.e. mismatch
between virtual and real head pose), causing users to get motion sickness or to
experience swimming of virtual content.

XR compositors also optimize for latency. An already-rendered frame is
corrected for the most recent head-pose, right before its scan-out to display.
The time between the correction of a frame and its presentation determines the
resulting latency. In order to keep this value as low as possible, a compositor
needs to control how late a frame can be scheduled in order to make the desired
presentation time.

The Atomic KMS API is the lowest-level cross-driver API for programming
display controllers on Linux. With KMS, buffers can be submitted directly from
user space for display, circumventing traditional presentation layers of
graphics APIs (e.g. EGL surfaces or Vulkan swapchains). This way, applications
gain exclusive access to the display engine for maximum control. Collabora and
DAQRI recently published the kms-quads sample project to demonstrate this
technique [2]. While working on this, we identified several issues of the KMS
API that make it challenging to implement tightly scheduled buffer
presentations as required by the use cases mentioned above. For instance, which
part of the scan-out signal timestamps provided by KMS refer to is not well
defined. Furthermore, it is unclear what the latest point in time is that a
buffer can be submitted to make a specific presentation deadline (see [3] for
related discussion). The advent of adaptive-sync support in KMS makes this
topic even more complex.

This talk should serve as an introduction and summary to user-driven
presentation timing via KMS, based on last year’s experience of implementing a
KMS-based AR compositor at DAQRI. We will discuss the use-case, its
implementation and demonstrate open problems of this topic, hopefully leading
to further discussion at the venue.

[0] https://medium.com/@alen.ladavac/the-elusive-frame-timing-168f899aec92
[1] https://lists.freedesktop.org/archives/dri-devel/2018-February/165319.html
[2] https://gitlab.freedesktop.org/daniels/kms-quads
[3] https://github.com/mikesart/gpuvis/issues/30

Code of Conduct
Yes

GSoC, EVoC or Outreachy
No



Presenter: FINK, Heinrich (DAQRI)

Session Classification: Main Track

Track Classification: Talk (full slot) (closed)


