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high M2P latency
no prediction
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Effects of different latencies

low M2P latency
with prediction

http://www.youtube.com/watch?v=tegjEuG0QU0
http://www.youtube.com/watch?v=lfIWJnq0JTE
http://www.youtube.com/watch?v=TYpp8beGeZs


DAQRI KMS Compositor



Userspace

DAQRI Compositor SW Stack
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application thread

GBM alloc, EGL setup, dmabuf setup

acquire layer dbus RPC
⇨ layer_id main | overlay
⇦ dimension, drm formats and 

modifiers
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setup layer dbus RPC
⇨ dmabuf FDs and format modifiers

for buffer and chain count
⇦ frame_client_socket

one FD of AF_UNIX socketpair

while poll (frame_client_socket) {

pose = tracking_predict( PTS )
gl_bind_target( buffer_index ) EGL
gl_render_views( pose ) OpenGL
fence = egl_fence_create_export()

}

⇦ begin frame AF_UNIX MSG
presentation time (PTS) 
CLOCK_MONOTONIC

⇨ submit frame AF_UNIX MSG
buffer_index
viewports
pose
fence dma-fence completion

compositor presenter thread

KMS setup (via logind)
EGL setup
GBM alloc & EGL import
GL warper setup

compositor control thread

handle dbus layer RPC
track client state
track client liveliness

ctrl msg

while poll (frame_sockets[layers], warp_timer, kms_device, commit_timer) {
on frame_sockets[layer] with submit frame:

store as layer's last_submit

on warp_timer fired:
input = fence_signalled( last_submit.fence ) ? last_submit : last_signalled
pose = tracking_predict( next_frame_ts )
warped = gl_warp( input.buffer, input.pose, pose )
kms_plane.properties = {

.IN_FENCE_FD = warped.completion_fence,

.FB_ID = warped.buffer }

on commit_timer fired:
perform async Atomic KMS commit of assembled properties

on kms_device with DRM_EVENT_FLIP_COMPLETE at event_ts:
schedule next frame's events
next_frame_ts = event_ts + refresh_duration
warp_timer.next = next_frame_ts - warp_margin
commit_timer.next = next_frame_ts - commit_margin
send begin frame to active layers with PTS = next_frame_ts

}



DRM_EVENT_FLIP_COMPLETE timestamp

8

‒ timestamp passed to drmHandleEvent() → page_flip_handler2

‒ can be high-precision (HW corrected) if supported by driver
- struct drm_driver{ .get_vblank_timestamp } needs to be implemented

‒ driver-internal semantics go back to GLX_OML_sync_control:
- ...time the first scan line of the display begins passing through 

the video output port...
- i.e. time immediately after vblank
- this is critical to know for warping, especially when modes have 

weird front/back porches

https://www.khronos.org/registry/OpenGL/extensions/OML/GLX_OML_sync_control.txt


How to get presentation time in KMS?
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Missing in user space

‒ knowledge whether driver supports high-prec timestamps
- could be solved by new Atomic KMS property?

‒ documentation of timestamp semantics
- i.e. bring over from OML_sync_control
- but are all drivers with high-prec timestamp support actually 

implementing it according to spec?
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Late KMS Commits



‒ to optimize latency, schedule commit as close to page-flip 
as possible

- i.e. execute GPU-warp as late as possible
- can't commit plane properties while commit is already pending → -EBUSY

‒ So what's the latest point we can commit for a frame?
- short answer: we don't know

Late KMS commits
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Late KMS Commits
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Late KMS Commits
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Hardware
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Problems of Late KMS Commits

‒ "some-margin" to schedule ahead is not defined

‒ we only know margin was too small after the fact of having 
dropped a frame

- a single dropped frame is very visible on AR headsets

‒ Can we do any better?
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Visualizing high-prec timestamps (GPUVis)

‒ extended drm_vblank_event tracepoint to carry 
high-prec timestamp

‒ extended GPUVis to optionally visualize high-prec 
timestamp instead of trace-point timestamp

- and to allow setting an external timestamp of a user-print event 
(e.g. visualize dma-fence timestamps)

- both needs echo mono > /sys/kernel/tracing/trace_clock
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kms-quads



kms-quads
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‒ straightforward and well-documented KMS example
- Written by Daniel Stone Collabora based on DAQRI's requirements
- boosted DAQRI compositor development
- Updated with features and lessons-learned from DAQRI compositor
- MIT license, get it here)

‒ shows (and explains!) how to ... 
- use Atomic KMS for page flipping
- draw into GBM buffers with GL Core/ES3/ES2 (+EGL setup)

- use drm format modifiers to use compressed/tiled surfaces (if available)
- calculate presentation timing and schedule rendering

- with a low-latency use-case in mind
- synchronize with dma-fence via EGLSync
- use logind (optionally) to safely switch VT and open devices

https://gitlab.freedesktop.org/daniels/kms-quads


Upstream collaboration

‒ bring some GLES extensions to GL Core
- use EGL_sync in GL core command stream (GL_EXT_EGL_sync)
- GL_MESA_framebuffer_flip_y

‒ i915
- discovered regression of alpha compositing with CCS compressed 

surfaces (5.0 regression), fixed upstream by Intel
- Async KMS pageflip task should run on high-prio worker queue, 

upstream patch submitted by Intel
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https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_EGL_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/MESA/MESA_framebuffer_flip_y.txt
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=77ce94dbe586c1a6a26cf021c08109c9ce71b3e0
https://lists.freedesktop.org/archives/intel-gfx/2019-September/212152.html


‒ KMS was a good choice for DAQRI to implement a lightweight 
AR compositor

‒ Timestamp semantics of KMS events are undefined in user 
space and should be properly defined

‒ Tightly scheduling late commits from user space is tricky
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Conclusions
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Q & A




