
A case study on frame presentation
from user space via KMS

Heinrich Fink
DAQRI @ XDC 2019

2

AR Pipeline

3

application

rendering

displays tracking
sensor data

motion-to-photon latency

pose
photonscompositor

warp

frameframe

pose (predicted for display time)

4

high M2P latency
no prediction

low M2P latency
no prediction

Effects of different latencies

low M2P latency
with prediction

http://www.youtube.com/watch?v=tegjEuG0QU0
http://www.youtube.com/watch?v=lfIWJnq0JTE
http://www.youtube.com/watch?v=TYpp8beGeZs

DAQRI KMS Compositor

Userspace

DAQRI Compositor SW Stack

6
Intel Skylake iGPU

x86 CPU 3D display
engine

KMS

Mesa

application

rendering

displays tracking
sensor data compositor

warp

pose frame
photons

frame

pose

GBM
EGL

OpenGL

Kernel i915

i965

DRM

application thread

GBM alloc, EGL setup, dmabuf setup

acquire layer dbus RPC
⇨ layer_id main | overlay
⇦ dimension, drm formats and

modifiers

7

setup layer dbus RPC
⇨ dmabuf FDs and format modifiers

for buffer and chain count
⇦ frame_client_socket

one FD of AF_UNIX socketpair

while poll (frame_client_socket) {

pose = tracking_predict(PTS)
gl_bind_target(buffer_index) EGL
gl_render_views(pose) OpenGL
fence = egl_fence_create_export()

}

⇦ begin frame AF_UNIX MSG
presentation time (PTS)
CLOCK_MONOTONIC

⇨ submit frame AF_UNIX MSG
buffer_index
viewports
pose
fence dma-fence completion

compositor presenter thread

KMS setup (via logind)
EGL setup
GBM alloc & EGL import
GL warper setup

compositor control thread

handle dbus layer RPC
track client state
track client liveliness

ctrl msg

while poll (frame_sockets[layers], warp_timer, kms_device, commit_timer) {
on frame_sockets[layer] with submit frame:

store as layer's last_submit

on warp_timer fired:
input = fence_signalled(last_submit.fence) ? last_submit : last_signalled
pose = tracking_predict(next_frame_ts)
warped = gl_warp(input.buffer, input.pose, pose)
kms_plane.properties = {

.IN_FENCE_FD = warped.completion_fence,

.FB_ID = warped.buffer }

on commit_timer fired:
perform async Atomic KMS commit of assembled properties

on kms_device with DRM_EVENT_FLIP_COMPLETE at event_ts:
schedule next frame's events
next_frame_ts = event_ts + refresh_duration
warp_timer.next = next_frame_ts - warp_margin
commit_timer.next = next_frame_ts - commit_margin
send begin frame to active layers with PTS = next_frame_ts

}

DRM_EVENT_FLIP_COMPLETE timestamp

8

‒ timestamp passed to drmHandleEvent() → page_flip_handler2

‒ can be high-precision (HW corrected) if supported by driver
- struct drm_driver{ .get_vblank_timestamp } needs to be implemented

‒ driver-internal semantics go back to GLX_OML_sync_control:
- ...time the first scan line of the display begins passing through

the video output port...
- i.e. time immediately after vblank
- this is critical to know for warping, especially when modes have

weird front/back porches

https://www.khronos.org/registry/OpenGL/extensions/OML/GLX_OML_sync_control.txt

How to get presentation time in KMS?

9

video data

front
porch

back
porch

sync

page-flip event
high-prec
timestamp

presentation time?
(depends on physical

display properties)

blank
interval

Missing in user space

‒ knowledge whether driver supports high-prec timestamps
- could be solved by new Atomic KMS property?

‒ documentation of timestamp semantics
- i.e. bring over from OML_sync_control
- but are all drivers with high-prec timestamp support actually

implementing it according to spec?

10

Late KMS Commits

‒ to optimize latency, schedule commit as close to page-flip
as possible

- i.e. execute GPU-warp as late as possible
- can't commit plane properties while commit is already pending → -EBUSY

‒ So what's the latest point we can commit for a frame?
- short answer: we don't know

Late KMS commits

12

Late KMS Commits

13
Hardware

DRM_EVENT (i.e. FLIP_COMPLETE)
(user space)

blank
interval

last-point
commit

A should happen some time before B

Anext = C + refresh - some_margin

using C as the base: less subject to schedule-jitter (as
it's HW corrected)

On our platform, a fixed some_margin seems
reasonable

page-flip event
high-prec
timestamp

(kernel)
???

vblank IRQ(s)

A

B

C

video databack
porch

sync

front
porch

Late KMS Commits

14

video data

Hardware

DRM_EVENT (i.e. FLIP_COMPLETE)
(user space)

blank
interval

last-point
commit

Some HW can page-flip after
vblank start

Especially VRR might work like
this

Same user-space heuristic here:
A should happen some time
before B

page-flip event
high-prec
timestamp

(kernel)
???

vblank IRQ(s)

A

B

C
back
porch

sync

front
porch

Problems of Late KMS Commits

‒ "some-margin" to schedule ahead is not defined

‒ we only know margin was too small after the fact of having
dropped a frame

- a single dropped frame is very visible on AR headsets

‒ Can we do any better?

15

Visualizing high-prec timestamps (GPUVis)

‒ extended drm_vblank_event tracepoint to carry
high-prec timestamp

‒ extended GPUVis to optionally visualize high-prec
timestamp instead of trace-point timestamp

- and to allow setting an external timestamp of a user-print event
(e.g. visualize dma-fence timestamps)

- both needs echo mono > /sys/kernel/tracing/trace_clock

16

17

18

19

20

kms-quads

kms-quads

22

‒ straightforward and well-documented KMS example
- Written by Daniel Stone Collabora based on DAQRI's requirements
- boosted DAQRI compositor development
- Updated with features and lessons-learned from DAQRI compositor
- MIT license, get it here)

‒ shows (and explains!) how to ...
- use Atomic KMS for page flipping
- draw into GBM buffers with GL Core/ES3/ES2 (+EGL setup)

- use drm format modifiers to use compressed/tiled surfaces (if available)
- calculate presentation timing and schedule rendering

- with a low-latency use-case in mind
- synchronize with dma-fence via EGLSync
- use logind (optionally) to safely switch VT and open devices

https://gitlab.freedesktop.org/daniels/kms-quads

Upstream collaboration

‒ bring some GLES extensions to GL Core
- use EGL_sync in GL core command stream (GL_EXT_EGL_sync)
- GL_MESA_framebuffer_flip_y

‒ i915
- discovered regression of alpha compositing with CCS compressed

surfaces (5.0 regression), fixed upstream by Intel
- Async KMS pageflip task should run on high-prio worker queue,

upstream patch submitted by Intel

23

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_EGL_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/MESA/MESA_framebuffer_flip_y.txt
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=77ce94dbe586c1a6a26cf021c08109c9ce71b3e0
https://lists.freedesktop.org/archives/intel-gfx/2019-September/212152.html

‒ KMS was a good choice for DAQRI to implement a lightweight
AR compositor

‒ Timestamp semantics of KMS events are undefined in user
space and should be properly defined

‒ Tightly scheduling late commits from user space is tricky

24

Conclusions

Special Thanks

X foundation for sponsoring my trip

Daniel Stone, Scott Anderson (Collabora)

Daniel Vetter et al. (Intel)

25

Q & A

