
Zink: OpenGL on Vulkan

Erik Faye-Lund

XDC 2019

Why OpenGL on Vulkan

• OpenGL is slowly becoming obsolete

– Vulkan is taking over on many platforms

– But it's still required for a lot of applications

• Some will probably never port over

• It's better for the community to focus on one API moving forward

– Fewer GPU drivers to maintain

– Vulkans driver are significantly easier to maintain than an OpenGL drivers

– Less horizontal parts to deal with

• Support full OpenGL on platforms where this hasn't yet been available

– Android, iOS, Fuchsia etc?

2

Zink: OpenGL on Vulkan!

• Zink is a Gallium driver that translate gallium API calls into Vulkan calls

– Treats the Vulkan API as if it was hardware

• Paired with the Gallium OpenGL state-tracker, we get a full OpenGL implementation

– Currently supports OpenGL 2.1

• (and OpenGL ES 2.0)

• But there's a few pitfalls

3

Time for some demos!

4

Architecture overview

Mesa

Vulkan

Gallium OpenGL
state-tracker

Zink SWS

Application

5

Architecture details

Vulkan

Pipeline cache

Gallium OpenGL state-tracker

Program cache Pipeline states Render passes

Framebuffers

Command buffers

Compiler

NIR shaders Draw calls Framebuffers

6

Performance: Batching

• Several zink_batch -objects per context (currently 4)

– Used in a round-robin fashion

– Protected by a fence

– Contains a VkCommandBuffer and a VkDescriptorPool

– Keeps deleted VkSampler -objects alive until batch is reused

• Will flush if:

– framebuffer is switched

– Actual flush

– VkDescriptorPool runs out of descriptors

7

Pitfalls

• Two-sided polygon mode

– No good solution apart from faking it?

– I'm open to ideas here!

• Line rasterization rules

– Depend on recent extension

– Can also implement diamond-exit rule in fragment shader

• Many more

– See previous talks

– See issue tracker: https://gitlab.freedesktop.org/kusma/mesa/issues

8

https://gitlab.freedesktop.org/kusma/mesa/issues

Upstreaming

• Upstreaming in Mesa is the next goal

– Some preparatory merge-requests sent this morning

– Hopefully the rest will follow in the next few weeks

• Avoids reliance on one single person as a bottle-neck

– There's several companies working on Zink right now

– Avoids accidentally breaking things and not figuring out right away

• Gets wider scrutiny

– Zink has modified the Gallium state-tracker a bit

• Allows building as part of distros

9

Changes to Gallium

• Add lowering of the following to the state-tracker

– Flat-shading

– Alpha testing

– Point-size forwarding

– Two-sided lighting

– User-defined clip-planes

• Lowers clip-distances to uniforms instead of driver-managed variable

• Prefer using R8 instead of A8 for glBitmap

• Will probably come first as a series, as they probaly require more review than the driver-

speific bits.

10

Continous Integration

• After upstreaming, we should set up som CI

• Can use SwiftShader on GitLab CI for testing without hardware

– SwiftShader contains a Vulkan 1.1 software rasterizer

• Completely TBD

– If anyone wants to test Zink on SwiftShader, that'd be great!

– Help wanted :)

11

Thank you!
Psst, slides here: https://gitlab.freedesktop.org/kusma/zink-xdc19

12

https://gitlab.freedesktop.org/kusma/zink-xdc19

