
Improving Frame Timing Accuracy
X, DRM and Mesa

Keith Packard
keithp.com
Valve



Introduction

● What do we want?
– Every frame displayed precisely when the application expects 

it.
– “Fast enough” frame rate.

● Why is this hard?
– Lots of moving parts:

● application scene changes
● compositing environment changes
● power/thermal management

– Asynchronous processing
● Applications queue rendering to GPU
● Display must wait for GPU completion



Rate Limiting

● Keep apps from getting too far ahead
– Avoid long delays when apps crash
– Reduce resource consumption
– Reduce lag

● “Buffer Back Pressure”
– Allocate limited # of buffers
– Block waiting for free buffer before drawing

● # of Buffers Varies 
– Depends on window system status

● Need a More Consistent Technique



Vblank Events

● Allow apps to know when VBlank happens
● RegisterDisplayEvent(VK_DISPLAY_EVENT_TY

PE_FIRST_PIXEL_OUT_EXT)
● Fence signaled at next Vblank
● Only works on direct Display targets
● Only works until you drop a frame
● Mixes Display action with Fences.



Wait for Present

● Allow apps to know when Present happens
– Directly throttle presentations

● Block thread waiting for specific present
– No callbacks, no events

● Doesn't use fences in API
– Much easier to implement

● Uses application-provided presentation ID
– Wait – display timing needs one of those too!



Accurate Display Timing

● Tell apps when vblank will be before 
rendering starts

● Allow apps to specify when frames should be 
displayed

● Get frames displayed on time
● Tell apps when frames were displayed

– And when rendering was complete, in the same 
time domain



OpenGL

● GLX_OML_sync_control
– Specify target present frame count
– Avoids early frame presentation

● But, no feedback about when frames were 
actually presented
– Many kludges required to guess

● GLX_EXT_swap_control
– Sets (min) number of frames per presentation
– No feedback on actual presentation time.



Current Vulkan APIs

● GOOGLE_display_timing
– Specify absolute (CLOCK_MONOTONIC) time for 

frame
– Feedback about when frames were presented

● May be delayed by a long time (but not with Mesa).

● EXT_calibrated_timestamps
– Get GPU/OS clocks values for the “same time”
– Allows conversion between GPU and OS time 

domains



Upcoming Vulkan Ideas

● Improve display timing
– Deal with variable rate displays
– Provide “display for at least this long” semantics
– Find something better than “not before”

● Clock skew and/or precision issues
● But hardware can't do “nearest”

– Split out presentation ID to new extension
● ID shared with wait-for-present extension



X

● Present extension spec is ready
– Specify target frame for PresentPixmap
– Provides feedback on when PresentPixmap was 

processed
● But the implementation lags

– When the desktop is composited



Current X Composited



Current X Compositing Process

● Each app rendering request generates 
damage events to compositor

● Compositor collects damage
● At 'suitable time', compositor draws and calls 

PresentPixmap



Let X Composite Sometimes

● Compositor tells X which windows it can 
handle

● X server composites them when possible
● Eventual goal:

– Share DRM compositor layer between window 
systems



Linux Flip API

● Current API is awkward
– Finite event limit in kernel mixes flips and vblank notifies
– Applications must work-around in user space

● Test for failure, attempt to empty pending events, retry

– Times in µS instead of nS
● Doesn't match Vulkan time precision

● Single queue spot
– Queue other buffers in user space

● No 'unqueue'
– Commit to planned frame up front

● Blocks waiting for rendering(?)
– The non-atomic path does
– And I think the atomic does as well.

● Cannot actually support “Mailbox” mode.



Queue without blocking

● Kernel can move to HW when rendering 
completes.

● Allow user space to continue.
● Alternative is to have user space take an 

event and delay queuing until then.



Multiple flips queued

● For same frame
– Kernel picks last one ready at vblank
– Idles (and notifies) when possible

● For future frames
– Allow user space to go idle for longer



Cancel queued entries

● Useful when queued for many future frames
– avoid displaying from terminated apps

● Necessary if we don't get multi-queue
– Handle all of that from user space



Summary

● Extend Vulkan to provide more usable API
● Fix timing under composited X
● Enhance Linux flip API

– Make flips more reliable
– Support Mailbox mode
– Provide ns resolution



Thanks!

Keith Packard
keithp@keithp.com

Valve

mailto:keithp@keithp.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

