

Implementing
Optimizations in NIR
Ian Romanick

XDC 2019

I’ve spent a good part of the last year and a half
working on various sorts of NIR optimizations.
These include both opt_algebraic optimizations and
optimizations that required new passes. I’m going to
present some things that I’ve learned through that
process.

2

Workflow

Before I talk developing optimizations, I’m going to talk
a bit about optimizing the developer.

3

Workflow

Two words: Automate everything

Automate your automation. Queue “I put automation in
your automation” joke.

Under-appreciated and often procrastinated aspect of
developer work.

4

Workflow

Two words: Automate everything

https://xkcd.com/1205/

It is possible to go too far. There is an Amdahl’s Law
type of analysis to do here.

A big factor in productivity of this work is how many
edit-compile-benchmark iterations can you do in a
day. Same applies to edit-compile-test or edit-
compile-debug.

The comic doesn’t tell the whole story. Say you have
two computational tasks that take 5 minutes each,
and it takes 5 seconds to start each one. You’re not
going to sit and watch the first one complete. If you
don’t come back to it for 10 minutes (because you
were busy reading web comics), that’s 5 minutes
wasted. Do that twice, and that’s entire missed edit-
compile-benchmark cycle.

5

Workflow

Two words: Automate everything

● Script your whole build and install process

● Install each build to a unique location... probably named after the GIT SHA

6

Workflow

Two words: Automate everything

● Script your whole build and install process

● Install each build to a unique location... probably named after the GIT SHA

● Make a wrapper script to set environment variables to use local
builds

● Script running your test suite and scraping data

7

Workflow

Two words: Automate everything

● Script your whole build and install process

● Install each build to a unique location... probably named after the GIT SHA

● Make a wrapper script to set environment variables to use local
builds

● Script running your test suite and scraping data

● Final script: determine the current SHA, run all the other scripts

● git rebase -i -x is your new best friend

8

Workflow

Get a second machine

● Many rebuilds, shader-db runs, benchmark runs take a lot of time

● It’s hard to do other work when you system is bogged down

● shader-db especially benefits from as many cores as possible

● See recent Phil’s Computer Lab YouTube videos about Ivy Bridge Xeons

Building a lower clock 10-core / 20-thread shader-db
system on the cheap would be interesting.

9

How to begin?

Pick an application you care about

● Extra points if it’s a new app that nobody has analyzed

● Scrape the shaders

MESA_SHADER_CAPTURE_PATH=some_location ./my_favorite_game

● Pick the biggest one and just look at the NIR output

INTEL_DEBUG=vs,tes,tcs,gs,fs,cs \
 ./run shaders/yofrankie/36.shader_test 2>&1 | less

Or the subset of
stages you care
about

NIR_PRINT=true environment variable is useful at
some later steps. This dumps the NIR instructions
after ever optimization or lowering pass that makes
any progress.

NIR_PRINT=true only works in debug builds, but you
want to do most shader-db runs on -march=native
release builds.

I usually look at the NIR instead of the GPU assembly
because instruction scheduling makes the assembly
a lot harder to follow.

Looking at the GPU assembly can help find other kinds
of optimizations. This is especially true if you want to
massage NIR into a form easier to generate machine
instructions for.

10

Let the analysis begin...

Look for anything odd or out of place

● Semi-redundant operations

● Flow-control that could be replaced with conditional selects

● Conditional selects that could be replaced with logic

● Anything with a lot of b2f or b2i. Seriously.

● ...

Semi-redundant patterns like x - y vs x > y. This
kind of optimization is looking to make CSE and
other optimizations more effective.

b2f and, to a lesser extent, b2i appear due to the
way the HLSL compiler handles Booleans for some
shader models. Most shaders that we see are some
how ported from HLSL... often by decompiling the
output of the HLSL compiler.

When we start looking at these shaders, what are we
likely to find?

11

Let the analysis begin...

https://commons.wikimedia.org/wiki/File:Starr-091115-1255-Psidium_guajava-lots_of_fruit_on_ground-Olinda-Maui_(24622476339).jpg

Remember kids, the lowest hanging fruit is the stuff
sitting on the ground.

I’m not kidding when I say that I practically can’t look at
the NIR from a shader without seeing something to
improve.

https://commons.wikimedia.org/wiki/File:Starr-091115-1255-Psidium_guajava-lots_of_fruit_on_ground-Olinda-Maui_(24622476339).jpg

12

Let the analysis begin...

Look for anything odd or out of place

● From that Yo, Frankie! shader,

 vec1 32 ssa_312 = fadd ssa_311, ssa_15
 vec1 32 ssa_313 = load_const (0x3d1d89d9 /* 0.038462 */)
 vec1 32 ssa_314 = fmul.sat ssa_312, ssa_313
 vec1 32 ssa_315 = fmul.sat ssa_314, ssa_314

I literally picked this shader from the public shader-db
at random, and I think that illustrates my point.

I saw a few odd things, but nothing obviously jumped
out as being improvable until I got near the end of
the shader.

13

Let the analysis begin...

Look for anything odd or out of place

● From that Yo, Frankie! shader,

 vec1 32 ssa_312 = fadd ssa_311, ssa_15
 vec1 32 ssa_313 = load_const (0x3d1d89d9 /* 0.038462 */)
 vec1 32 ssa_314 = fmul.sat ssa_312, ssa_313
 vec1 32 ssa_315 = fmul.sat ssa_314, ssa_314

Redundant!

14

Implement a fix

Most optimizations of this class are algebraic

● Simple match a pattern, replace with a new pattern

(('fsat', ('fmul', ('fsat', a), ('fsat', b))),
 ('fmul', ('fsat', a), ('fsat', b))),

● More complex optimizations my require a new pass
● nir_opt_comparison_pre was added for the x < y vs. x – y cases

● Find a pass that does something similar and borrow from it

● Maybe enhance an existing pass

15

Analyze changes

Compare results across each step

● Collect results before and after each change

git rebase -i -x rebase_shader-db.sh origin/master^

● My script creates a results file with the platform name an SHA in the name

● See what changed

./report.py -c results-ICL-00-e16fadd545d.txt \
 results-ICL-01-bee5237aaf8.txt | less

● Sometimes ls -ltc results-ICL-*.txt is useful while a run is going

rebase_shader-db runs shader-db for each Intel
platform. Catches cases where a change helps a
modern platform but regresses an older platform that
has more limitations, lacks certain instructions, etc.

Creates output files that contain the platform name and
the SHA. The number before the SHA is the number
of steps in the branch since origin/master.

16

Analyze changes

Compare results across each step

total instructions in shared programs: 16315391 -> 16315387 (<.01%)
instructions in affected programs: 1050 -> 1046 (-0.38%)
helped: 4
HURT: 0
helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1
helped stats (rel) min: 0.34% max: 0.44% x̄: 0.39% x̃: 0.39%
95% mean confidence interval for instructions value: -1.00 -1.00
95% mean confidence interval for instructions %-change: -0.47% -0.30%
Instructions are helped.

total cycles in shared programs: 363615417 -> 363615345 (<.01%)
cycles in affected programs: 4322 -> 4250 (-1.67%)
helped: 3
HURT: 0
helped stats (abs) min: 2 max: 44 x̄: 24.00 x̃: 26
helped stats (rel) min: 0.16% max: 3.55% x̄: 1.71% x̃: 1.42%

Fun fact: the shaders helped by that change weren’t
even in Yo Frankie! That shader did change, but the
instruction count did not.

A couple of interesting things to note in each bit.

1. Min and max helped and hurt.

2. Mean versus median. This can be especially
interesting. If the mean is significantly higher than
the median, it means that there are some extreme
outliers that may be worth examination.

3. The total instructions in shared program percentage.
 If this says “< .01%” (without regressions that need
fixing), I usually won’t continue won’t continue
working on a change.

This opt didn’t really help, so I’d save it off somewhere
for later.

17

Analyze changes

Look closely at interesting changes

● Extreme outliers

● Most helped / most hurt shaders

● Shaders from the same application

● Gather output from before and after the change

./try-before-and-after.py \
 results-SKL-01-afda24a7f2a.txt \
 results-SKL-02-4228deab7fa.txt \
 fs shaders/yofrankie/36.shader_test | less

● This is why you want to keep every build

Outliers include shaders with large change in number
instructions (but may not be largest percent change),
shaders with a large change in spills / fill, shaders
with changes in number of loops (very uncommon).

When you review patches like this, look at the shader-
db results. If the commit message doesn’t mention
the hurt shaders or outliers, ASK if the author looked
at them. No matter how new you are, this is
reasonable review feedback to give.

The “try-before-and-after” script scrapes the SHA of
the build to use and the name of the platform from
the names of the result files. This makes it easy to
just edit the old report.py command line.

18

Analyze changes

Look closely at interesting changes

● Compare the before and after shaders

diff –-side-by-side -W240 /tmp/before.txt /tmp/after.txt | less

● Output can be annoying to read due to SSA value changes

If git rebase -x is your best friend, diff –side-
by-side is who you hang out with when they’re
busy.

Removing one NIR instruction early in the shader
causes all of the SSA values to be renumbered, and
that causes most of the rest of the shader to appear
changed.

Shouldn’t be hard to write a script to “add N to all
ssa_X where X >= Y”.

Make notes. I have a long text file of weird things that
I’ve observed in shaders. After maintaining that file
for quite some time I realized the importance of
tracking which shader I saw each thing in.

19

Regressions

New optimization may prevent another optimization

● Most common problem: prevents CSE

● is_used_once predicate can help

● Other predicates can be added (e.g., is_not_fmul and is_fsign)

● Change may hurt a subset of platforms

● May lack certain instructions (flrp and ffma are common)

● May have extra limitations (use of constants for some instructions)

● etc.

All of the predicates live in nir_search_helpers.h.

Especially for Intel GPUs, some optimizations hurt our
ability to generate FMA instructions. Adding the right
predicates can help avoid most of the hurtful cases
while still allowing most of the helpful cases.

20

Regressions

New optimization may prevent another optimization

● May have to rework existing algebraic optimization to still work

● May have to add more algebraic optimizations

● May need to improve back-end instruction selection

● You can over do “fix just one more thing”
● No shame in (temporarily) abandoning something that isn’t bearing fruit

It’s like the old joke about the programmer who died in
the shower. He read the shampoo bottle “lather,
rinse, repeat” and got stuck in an infinite loop.

It can also start to feel like the old woman who
swallowed a fly. A fix on a fix on a fix on a fix... Either
reevaluate the fundamental approach or bail. As
many patches as I’ve landed to opt_algebraic, I’ve
tossed out twice as many.

21

Getting ready to submit

Collect all the results

● git rebase -i -x again

● Also ensures that intermediate steps don’t break the build

● MR pipeline only checks the last commit

● Some bisect will eventually hit the middle of your series

● If you haven’t changed anything since the last data collection...

./summarize-results.sh origin/master^..

● Gathers each SHA from the tree, looks for matching result files

Collect results to put in each commit message. A
summary of the results across the whole series is
good for the “cover letter” part of the MR.

22

Interesting area for future work

Additional conditioning for algebraic patterns

● Recall that a common regression is blocking CSE

● Add the ability to say “replace this pattern with that pattern if this
other pattern also exists”
● This could be done as a late optimization to under damage caused earlier

This is an idea that I had on Monday while preparing
for this presentation, so it’s not fully thought out yet.

23

Interesting area for future work

Additional conditioning for algebraic patterns

● Example: existing optimization for 1 – fsat(a) ⇒ fsat(1 – a)

● Moving the fsat eliminates some move instructions.

24

Interesting area for future work

Additional conditioning for algebraic patterns

● Example: existing optimization for 1 – fsat(a) ⇒ fsat(1 – a)

● Moving the fsat eliminates some move instructions.

● Actual implementation is very over-conditioned

(('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0),
 ('fsat', ('fadd', 1.0, ('fneg', a))))

● Necessary to prevent regressions

● What if we could remove the conditioning, and revert hurtful changes
later?

When I originally implemented this optimization, it
helped a lot of shaders, but it also caused a lot of
regressions. To compensate, I added a lot of
constraints on the application of the optimization.

25

Interesting area for future work

Additional conditioning for algebraic patterns

● Undo the earlier transformation:

(('fsat', ('fadd', 1.0, ('fneg', a))),
 ('fadd', ('fneg', ('fsat', a)), 1.0),
 ('fsat', a))

● Not clear how to efficiently implement the extra search

Remember when I said there’s no shame in
temporarily abandoning some optimizations? After
adding an optimizer feature like this, it may be worth
revisiting some of those earlier attempts.

26

Links

● Scripts for building and testing Mesa:

https://gitlab.freedesktop.org/idr/mesa-scripts

● shader-db with added scripts:

https://gitlab.freedesktop.org/idr/shader-db/commits/scripts

https://gitlab.freedesktop.org/idr/mesa-scripts
https://gitlab.freedesktop.org/idr/shader-db/commits/scripts

27

Questions?

