
Refactoring backlight and spi helpers in
drm/tinydrm

OUTREACHY INTERNSHIP REPORT

Meghana Madhyastha

Outline

• About me
• Introduction

– Project Goals
– DRM
– TinyDRM

• Backlight
• SPI
• Conclusion

About Me
• Round 15 (Dec 2017-Feb 2018) Outreachy intern
• Mentored by Daniel Vetter, Sean Paul and Noralf

Trønnes to contribute to the drm subsystem.

Project Goals

• Refactor Backlight and SPI helpers in
drm/tinydrm

• Make the helpers less tinydrm specific and make
them generic so that they can be used by other
drivers

Introduction: DRM
• Direct Rendering Manager
• Subsystem of the linux kernel
• Exposes an API that user space programs

can use to send commands and data to
the GPU.

• Addresses limitation of fbdev: able to
handle modern 3D accelerated GPU
based video hardware

Introduction: DRM

Introduction: Tinydrm

1. Driver helpers for very simple display hardware.
2. DRM drivers that are so small they can fit in a single source file.
3. helpers for MIPI Display Bus Interface (DBI) compatible display controllers
4. MIPI DBI implementation types:

a. Motorola 6800 type parallel bus

b. Intel 8080 type parallel bus

c. SPI type with 3 options:

Introduction: Tinydrm

Introduction: Tinydrm

Task: Refactor and move helpers
from tinydrm-helpers to general
drm source code files so that they
can be used by other drivers

Backlight

• Previously: Helpers present in tinydrm to find, enable and disable
backlight

• The task: Backlight is used by other drivers in drm. Can we make
the helpers general? Can we move them to video/backlight?

• During this process, I found that there was quite a bit of
replicated code and different ways to enable and disable a
backlight (different combinations of flags)

• Cleaned this up, made it more modular by encapsulating it into a
backlight_enable and backlight_disable functions

Backlight
THEN
● tinydrm/helpers
- Usage:

 if (ddata->backlight) {
ddata->backlight->props.power =
FB_BLANK_UNBLANK;
backlight_update_status(ddata->backlight);
 }

(ENCAPSULATE THIS IN backlight_enable)

NOW
● video/backlight/backlight.c

Separate function for enabling and
disabling backlight

- static inline int backlight_enable(struct
backlight_device *bd)

- static inline int backlight_disable(struct
backlight_device *bd)

 - Usage: backlight_enable(ddata->backlight);

Backlight
THEN
● tinydrm/helpers
- struct backlight_device

*tinydrm_of_find_backlight(struct
device *dev)

- Usage: mipi->backlight =
tinydrm_of_find_backlight(dev);

NOW
● video/backlight/backlight.c
- struct backlight_device

*of_find_backlight(struct device *dev)

- Usage: mipi->backlight =
of_find_backlight(dev);

SPI
• SPI: Interface bus - send data between

microcontrollers and small peripherals (eg. shift
registers, sensors, and SD cards.

• In Tinydrm: Helpers for device drivers to communicate
with spi.

spi-coretinydrm/tinydrm-helpers
SPI helperdriver

SPI
• Goal: as part of my overall goal of refactoring, remove redundant chunk splitting in tinydrm spi

helpers.
• Consider DMA transfers directly between the SPI hardware and a memory buffer
• The problem, we want to be able to send large >64kB buffers in one go to SPI.
• Tinydrm splits the buffer into max_dma_len chunks to spi-bcm2835 because

drivers/spi/spi-bcm2835.c - has an upper bound check on dma transfer
length (64KB) in bcm2835_spi_can_dma()

• Goal: 1) we want to remove splitting of buffer into small chunks in the tinydrm spi-helpers. This is because we
want to leave it to the spi core to handle.

Tinydrm spi-helper SPI-corespi-bcm2835

message

split message into chunks

c
h
u
n
k

check if chunk size <
64kb

Can also split message into
chunks

SPI

The solution
● Remove chunk splitting in tinydrm_spi_transfer in tinydrm-helpers

and split the buffer in the driver (bcm2835)
● The spi core will split a buffer into max_dma_len chunks for the spi

controller driver to handle.
● Remove the upper bound check on dma transfer length in

bcm2835_spi_can_dma().

SPI
Remove the DMA length checking in spi-bcm2835.c

SPI

“bcm2835_spi_transfer_one_message” in
spi-bcm2835.c calls the helper
spi_split_transfers_maxsize before calling
spi_transfer_one_message
to split the message into smaller chunks to be
able to use dma.

Split the message into <64KB chunks

Conclusion

• Current state: The backlight patches have been
accepted but the spi patches were still being
discussed

• Refactored backlight and spi helpers
• Learned a lot about the linux kernel.
• Learned how to collaborate with people and

communicate effectively.

QUESTIONS ?

