

Everything Wrong With EPGAs

Ben Widawsky
ben@bwidawsk.net
@widawsky

Agenda

- 1. What is an FPGA
- 2. Tools
- 3. How are FPGAs being used
- 4. Similarities to graphics / avoiding the pitfalls

LUT2s

XNOR with LUT2

XNOR

INPUTA	INPUTB	OUTPUT
0	0	1
0	1	0
1	0	0
1	1	1

LUTs as Building Blocks

2 LUT3 + MUX = LUT4...

(A&B) C			SRAM
Α	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Anatomy of an FPGA

But Wait, There's More!

What's Wrong With That?

- The programmable nature ultimately makes it less efficient than "hardwired" transistors.
- FPGAs differ enough to make it difficult to move between vendors
 - Unlike GPUs, standards are soft
 - Verilog/VHDL offer little and developers choose libraries over writing portable HDL
- FPGA hardware differs drastically
 - Standardize a description of FPGA floorplan

Tools

Current Landscape

- Vendor tools rule (synthesis, timing, place and route, bitstreams)
 - Quartus, Vivado, Diamond
 - Vivado's RapidWright is moving toward opening flow, allowing 3rd party place and route (Yosys supports this experimentally)
- 3rd party EDA tools exist (synthesis and timing)
 - Cadence, Mentor, Synopsys
- Open Source tools are in their infancy
 - Yosys/nextpnr, icarus
- Kernel interfaces is usable as of 5.2...current
 - DFL Device Feature List
 - OPAE Open Programmable Acceleration Engine
 - Per vendors interfaces ~20 of these

FPGA Tooling Flow

HDL -> Netlist -> Place & Route -> Bitstream -> Download

Trivial **NP Complete** NP Hard (Optimal solution with finite time, (circuit minimization, acceptable solution in finite time is technology mapping) NP Complete) always @(posedge clk) if(RDY) begin $AI7 \leq AI[7];$ BI7 <= temp_BI[7]; OUT <= temp[7:0]; 111010010111000101010101000111101001 CO <= temp[8] | CO9; $N \leq temp[7];$ HC <= temp_HC;</pre> end assign $V = AI7 ^ BI7 ^ CO ^ N;$ assign $Z = \sim IOUT$;

Synthesis Example (AND - LUT2)

```
bwidawsk@lundgren:~/work/fpga/projects/simple cat and.v
module AND (input x,
    input y,
    output reg a
    assign a = x \& y;
endmodule
attribute \src
"/home/bwidawsk/work/fpga/projects/simple/and.v:1"
module \AND
 attribute \src
"/home/bwidawsk/work/fpga/projects/simple/and.v:3"
  wire output 3 \a
  attribute \src
"/home/bwidawsk/work/fpga/projects/simple/and.v:1"
  wire input 1 \x
  attribute \src
"/home/bwidawsk/work/fpga/projects/simple/and.v:2"
  wire input 2 \y
 cell $lut $abc$93$auto$blifparse.cc:492:parse_blif$94
    parameter \LUT 4'1000
    parameter \WIDTH 2
    connect \A { \x \y }
    connect \Y \a
  end
end
```

```
"modules": {
 "AND": {
   "attributes": {
     "src": "/home/bwidawsk/work/fpga/projects/simple/and.v:1"
    "ports": {
     "x": {
       "direction": "input",
       "bits": [ 2 ]
     "v": {
        "direction": "input",
       "bits": [ 3 ]
       "direction": "output",
       "bits": [ 4 ]
   "cells": {
     "$abc$93$auto$blifparse.cc:492:parse_blif$94": {
       "hide_name": 1,
       "type": "$lut",
        "parameters": {
         "LUT": 8,
         "WIDTH": 2
       "attributes": {
       "port_directions": {
         "A": "input",
         "Y": "output"
```


Technology Mapping (A&B)|C - LUT3

```
module MORE (input a,
input b,
input c,
output reg o);
assign o = (a&b)|c;
endmodule
```

```
cell $lut $abc$49$auto$blifparse.cc:492:parse_blif$50
parameter \LUT 8'<mark>11111000</mark>
parameter \WIDTH 3
connect \A { \<mark>c \a \b</mark> }
connect \Y \o
end
```

AC	B A	C B	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Place and Route

- Place
 - Assign to specific locations on the chip
 - Minimize distance
 - Meet timing constraints
 - Make it fit
 - Utilize hard IP blocks
- Route
 - Find a route to connect nets
 - Reduce delay in critical nets
- Trade Offs
 - Area
 - Performance
 - Power

Bitstream Assembly

- Create the binary data
 - represents the LUT programming (synthesis results)
 - in the right locations (place results)
 - with the right connections (route results).
- Bitstream may be compressed, encrypted, signed, or all 3
 - Decompression may be done by first uploading logic to decompress

Programming

- Puts the bits on the card
- JTAG based
 - OpenOCD
 - Proprietary
- Volatile/non-volatile
- Partial Reconfiguration

What's Wrong With That?

- Tools are proprietary and drastically differ by IHV
 - Can take multiple days to get up and running
- Tools require cumbersome license servers that are hard to use
 - Binary blobs using 'who knows what' compromised software
- Rely on the customer support of IHV
- Cost of entry is high enough that much IP generation is outsourced
 - End users often "connect boxes" only
- Customers are unable to improve or debug the tool flow
- Scripting requires TCL interfaces that aren't well documented

How Are They Used?

Market Size

Solution without a problem

Traditional Vertical FPGA

- Description
 - Burn a design onto an FPGA for shipping, or as a POC
 - Write or buy all RTL for the device
- Reasoning
 - Shipping in low volume (ASIC economies of scale win at ~3 million units)
 - Implementing volatile specs
 - Can't wait for ASIC turnaround
 - Simulate ASIC before RTL freeze
 - Much faster than soft simulators

Traditional FPGA "Flow"

- FPGA is sitting "on a desk" during development
- Develop entire "stack"
 - RTL implementation, asset integration, and infrastructure
- At production, FPGA image is burned onto Flash that is fetched on boot

High Level Synthesis

- Description
 - Enable high level language to make synthesizable HDL
 - C/C++ -> bitstream
 - Otherwise, same as vertical flow
- Reasoning
 - Many more software engineers than hardware engineers

FPGA As An Accelerator (FPGAAAA!)

- Description
 - Some FPGA somewhere runs your stuff fast
- Interfaces
 - OpenStack Cyborg (OPAE)
 - OpenVINO (DLA)
 - Kubernetes device plugin (OPAE)
- Raw Access
 - Azure
 - AWS

FPGAAAA "Flow"

FPGA As An Al Accelerator (FPGAAAAA!!)

Microsoft's Project Brainwave claims win over Google TPU [*]

"Project Brainwave achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art graphics processing units (GPUs) on large recurrent neural networks (RNNs), with no batching"

FPGAAAAA Flow

What's Wrong With That?

- Relatively small market
- Vertical FPGA developers learned a tool and don't want to switch
- Many accelerator flows actually go to OpenCL first
 - Can lead to less optimal designs
- OPAE is open and great, but...
 - Depends on proprietary FIU
 - AFUs are also usually proprietary
- FPGAAAAA is very resource intensive
- HLS hasn't really taken off
- Compilers did the proprietary thing... they lost
 - Intel, ARM as examples still sell compilers, but developers prefer GCC/LLVM

Comparisons to GPUs

Similarities

- Dense set of transistors providing more power than a CPU
 - New markets are growing fast and standards follow slowly
- Very limited set of vendors Xilinx, Intera
- Lots of proprietary software.
- Lack of good documentation.
 - ALL supported hardware is reverse engineered
- Binary blob drivers
 - Currently, almost everything uploaded to an FPGA is proprietary
- Vibrant reverse engineering community
- DFL is DRM/GEM/KMS, OPAE is libdrm

Dissimilarities

- No strict standard APIs
 - Lack of conformance tests
 - Yosys and nextpnr should be the Mesa of FPGAs
 - Need a piglit
- Kernel interfaces in infancy
 - Consolidated interfaces driven by Intel
 - Provides a standardized way to upload non-standard functionality
 - ie. Should a gzip accelerator differ between Xilinx/Altera?
 - Lots of emphasis on opening the interface to the device and no emphasis on what's running on the device
- Limited interest in opening
 - There's no "whale" asking for this

Learning From Mistakes of Graphics

General problem in FPGA are the same as graphics

- 1. Enforce an open userspace
- 2. Enforce unit testing early
- 3. Don't allow interfaces to be merged supporting one type of hardware
- 4. Use existing kernel paradigms for datasets input/output
- 5. Make virtualization use case first class citizen
- 6. Customers need to demand open documentation
- 7. Don't assume Windows is the dominant OS
- 8. Don't assume open source can't solve difficult engineering problems

Call to action

- Improve Yosys
 - Use and file bugs make a GPU!!
 - ECP5 and ice40 work well
 - Look into utilizing Yosys for OpenCL
 - Feasibility on using yosys to synthesize AFUs
- Improve PNR
- Reverse engineering
 - Many efforts: prjtrellis, prjxray, prjmistral
 - Help add support for other platforms
- Work on standards
 - Bitstreams, floorplans
- Review the mailing list for DFL linux-fpga@vger.kernel.org

