
DRM/KMS for Android

Kernel display & graphics, testing update

Alistair Delva <adelva@google.com>

० Who am I?
○ Working at Google with the Android Systems / Kernel team
○ Responsible for the Cuttlefish Virtual Device (CVD)
○ Also work on dev board support in the Android Open Source Project (AOSP)

० Trying to standardize display/graphics/multimedia stacks
○ More examples of open source / upstream stacks in AOSP
○ Virtual platform should use the same interfaces
○ Conformance testing for display via Vendor Test Suite (VTS)

० Talk will mostly look at the problem from a kernel PoV

Overview

Android on a Legacy Stack
Kernel

EGL / Open GL ES
Vulkan

gralloc hwcomposer

ANDROID FRAMEWORK

OpenMAX
/ Codec2

Vendor HAL
(unmodified)

Vendor driver

Video Codec

FBDEV

Scaler

Display Driver3D Driver Core

Vendor-defined
kernel interface

Android on an Upstream Stack
Kernel

3D Driver
Core Display Driver

ScalerVideo
Codec

EGL / Open GL ES
Vulkan

gralloc
(e.g. minigbm)

libdrm

drm_hwcomposer

ANDROID FRAMEWORK

OpenMAX
/ Codec2

DRM Rendernode

Vendor HAL
(unmodified)

New DRM stack

DRM interop

Vendor-defined
kernel interface

Implementation
challenge for vendor

DRM

० Pixel 3 / 3a / +

० DragonBoard 845c (under review)
○ Same SoC as Pixel 3, but not the same driver
○ Proves Android can run on upstream driver

० Other platforms: Hikey, Hikey960, BeagleBoard X15, Cuttlefish

Upstream stacks in AOSP

Cuttlefish Virtual Device (CVD)

० Android for Google Cloud
○ KVM based, built on top of crosvm virtual machine monitor
○ Used by Google for continuous integration testing of changes to Android
○ When you upload to AOSP review, your change is tested on cuttlefish

० Cuttlefish uses an upstream graphics stack
○ Can boot upstream kernels (just a defconfig)
○ SwiftShader, for software GPU use cases
○ Mesa (virgl) for hardware acceleration

$ launch_cvd -gpu_mode=drm_virgl
○ minigbm (gralloc), drm_hwcomposer

० Planned features
○ Vulkan support
○ More KMS planes, more pixel formats

https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://github.com/google/swiftshader
https://virgil3d.github.io/
https://chromium.googlesource.com/chromiumos/platform/minigbm/
https://gitlab.freedesktop.org/drm-hwcomposer/drm-hwcomposer

० VTS enforces shipping one of three kernels for newly launching devices
○ Android P - 4.4, 4.9, 4.14
○ Android 10 - 4.9, 4.14, 4.19
○ Android 11 - 4.14, 4.19, 5.4 (GKI)

० Devices get two years of upgrades too
○ Lots of kernels to test
○ Android 11 - 4.4, 4.9, 4.14, 4.19, 5.4

० Vendor kerneIs might make it worse (more on this later)
○ Inconsistent uapi / kernel feature set, no LTS fixes, more difficult to test

Upstream stacks for vendors?

Vendor A
Linux 4.14
ion from 4.9
drm from 4.17
v4l2 from 4.14

Vendor B
Linux 4.14
ion from 4.14
drm from 4.14
v4l2 from 4.19

Vendor C
Linux 4.14
…

2019 | Public

https://lwn.net/Articles/771974/
tl;dr Aims are to reduce fragmentation, provide security patches for everybody

Generic Kernel Image (GKI)

Generic ARM64 kernel for all Android devices

○ All ARM64 Android
devices

○ Validation only on x86_64

○ android-mainline

○ android-4.19

○ android-5.4 (soon)

○ Single Kernel Configuration
(gki_defconfig)

○ Suitable for all ARM64 based
devices

○ Single Toolchain (Clang)

○ Hermetic Build

Branches Configuration Toolchain Scope

https://lwn.net/Articles/771974/

2019 | Public

० Define a baseline ABI

० Keep it along with your sources

० Establish ABI checking (e.g. build_abi.sh) as
mandatory test before merging

० Changes targeting Android Common Kernels
have to pass this test in AOSP Gerrit

GKI - ABI Monitoring

--- a/include/linux/utsname.h

+++ b/include/linux/utsname.h

@@ -22,6 +22,7 @@ struct user_namespace;

 extern struct user_namespace init_user_ns;

 struct uts_namespace {

+ int dummy;

 struct kref kref;

 struct new_utsname name;

 struct user_namespace *user_ns;

2019 | Public

GKI - Compliance Structure

boot.img
kernel
ramdisk.cpio.gz

/init

vendor-boot.img
ramdisk.cpio.gz

/lib/modules/*.ko

system.img

vendor.img
/vendor/lib/modules/*.ko

boot.img
kernel
ramdisk.cpio.gz

/init

system.img

vendor.img
/vendor/lib/modules/*.ko

Before GKI With GKI

Most drivers
are built-in

Non-boot
drivers

Subsystems are built in,
most drivers are not

Boot drivers

GSI

GKI

Vendor modified

AOSP

Vendor

Combined by bootloader

U
se

rs
p

ac
e

K
er

ne
l

GKI - Implications for Display/GPU

० Display drivers are modules, can’t be built-in
○ Stable ABI within LTS release (4.19.x through 4.19.y)

■ Maintained by Android kernel team
■ Not the whole kernel, some security changes might break compat

○ Modules can still be patched by vendors as before

० dma-buf, drm, etc. is built in
○ Will get security + bugs fixes via LTS
○ We might backport subsystems to older kernels

० Display/GPU drivers not using DRM/KMS will be vendor’s responsibility
○ Can only use symbols exported by GKI

० Verified as part of Android VTS

Testing upstream stacks
० Not just a kernel effort

○ drm_hwcomposer used on many AOSP platforms
■ hikey, hikey960, cuttlefish, db845c

○ Mesa used on cuttlefish (virgl) and db845c (freedreno)
○ Teams at Linaro keeping these projects up to date in AOSP

० igt-gpu-tools has been added to AOSP
○ Enables whole DRM subsystem testing from userspace
○ Made some Android build system / porting changes

■ https://android-review.googlesource.com/q/topic:igt-android

○ Still working on baseline test plan for AOSP platforms, Pixel

० Detection of DRM display driver will be added to Android VTS
○ Detection will trigger igt-gpu-tools on those display drivers

० Can be tough to test upstream when device ecosystem runs older kernels
○ Virtual and AOSP platforms can help keep us honest

https://gitlab.freedesktop.org/drm-hwcomposer/drm-hwcomposer
https://android-review.googlesource.com/q/topic:igt-android

Porting IGT to Android (again)

० IGT needs to run natively on Android
○ Requirement for VTS integration
○ Have to use Blueprint files (no meson)

० Changes to AOSP to expose dependencies
○ libkmod libelf libunwind

० Mock implementations
○ libcairo libglib2.0 libpciaccess

० WIP
○ ifdef/mock/add libudev libprocps
○ Getting more tests to run on HW

० Future
○ Chamelium testing w/ AOSP devices?

cc_binary {
 name: "gem_blt",
 srcs: [
 "benchmarks/gem_blt.c",
 "lib/drmtest.c",
 "lib/igt_aux.c",
 "lib/igt_core.c",
 "lib/igt_debugfs.c",
 "lib/igt_dummyload.c",
 "lib/igt_kmod.c",
 "lib/igt_sysfs.c",
 "lib/ioctl_wrappers.c",
 "lib/i915/gem_mman.c",
],
 cflags: [
 "-Wall",
 "-Werror",
 "-Wno-missing-field-initializers",
 "-Wno-unused-parameter",
 "-Wno-unused-variable",
 "-DHAVE_GETTID",
 "-DHAVE_LIBGEN_H",
 "-DHAVE_MEMFD_CREATE",
],
 local_include_dirs: [
 "lib",
 "lib/stubs/drm",
 "prebuilt-intermediates",
],
 static_libs: ["libelf", "libelf_headers", "libkmod"],
 shared_libs: ["libdrm", "libunwind"],
 stl: "none",
}

Backporting subsystems?

० Display/graphics/multimedia especially fragmented
○ Vendors forward-port or backport subsystems anyway
○ ‘Upstream first’ isn’t really working for mobile SoCs

० Backporting DRM core from latest LTS to older LTS kernels
○ For Android 11: android-{5.4,4.19,..} with same DRM core?
○ Will it help ‘upstream first’, display/graphics/multimedia fragmentation?

० Other technical debt
○ Deprecate ion, replace with dma-buf heaps (will miss 5.4)
○ Backport dma-buf from 5.5 to android-{5.4,4.19,..}?
○ V4L2 Request API (for Codec2)

० Future
○ Reusable syncs (like DRM syncobj) for all drivers
○ Start looking at codecs, camera

https://lwn.net/Articles/784325/
https://lwn.net/Articles/750298/

Questions?

