
© 2019 Arm Limited

Introducing the 
Vulkan WSI Layer

• Rosen Zhelev
• 2nd Oct 2019



2 © 2019 Arm Limited

Introduction

• Who am I?
Software Engineer at Arm. Working on the Mali GPU driver for the past 2 years.

• Overview
• Introduce how windowing system integration works within the Vulkan API.
• Describe approach to move windowing system code outside of a Vulkan driver and into a standalone 

Vulkan Layer.
• Present the current status of the project and discuss the reasons behind initiating this.

Vulkan WSI Layer project is hosted at https://gitlab.freedesktop.org/mesa/vulkan-wsi-layer

• The idea for this project has been floating for some time. It was described by Jason Ekstrand in his blog 

post Linux Window System Integration as a Layer (almost)

https://gitlab.freedesktop.org/mesa/vulkan-wsi-layer
http://jason-blog.jlekstrand.net/2017/12/linux-window-system-integration-as-layer.html


3 © 2019 Arm Limited

Windowing system integration for 3D Graphics drivers

• 3D Graphics APIs have a concept of a windowing system that manages and displays the 
rendered output to the user.

• The graphics driver needs to communicate with the windowing system through specific 
APIs and negotiate image formats, memory allocation and synchronization.

• For most operating systems, a single windowing system exists making it easier to 
support. Not so with Linux, where windowing systems have seen some extensive 
development in the past years – X11, Wayland, Direct to display (DRM), Mir

• It is more desirable to have this integration code aligned with the windowing system 
rather than the GPU focused graphics driver in order to better respond to changes.



4 © 2019 Arm Limited

Vulkan WSI Extensions

• The core Vulkan API does not provide support for windowing systems. Instead 
windowing system integration (WSI) is entirely handled through optional extensions.

• Instance extensions - VK_KHR_surface introduces a VkSurfaceKHR object. This 
represents a native window.
• VK_KHR_wayland_surface
• VK_KHR_xcb_surface
• VK_KHR_xlib_surface
• VK_KHR_display

• Device extension VK_KHR_swapchain – Allows creation of a VkSwapchainKHR
connected to a surface and represents a queue of buffers that can be presented to the 
windowing system.



5 © 2019 Arm Limited

Vulkan WSI implementations

• GPU drivers often make use of a defined interface to between WSI and the core 
rendering to achieve a clean separation between them.

• Windowing System code can be mostly standalone from the rest of the driver.

• Mesa – Accomplishes separation through something that mostly looks like a Vulkan 
extension. Makes significant use of DRM modifiers to describe image layout and 
format.

• Android – Implements most of the WSI extensions in its Vulkan Loader and just requires 
drivers to support the private VK_ANDROID_native_buffer extension.



6 © 2019 Arm Limited

Vulkan Loader and Layers

• The Vulkan API does not mandate but allows for a system loader.

• Most Linux systems use the reference Khronos Loader developed by LunarG.

• The Loader allows for multiple Vulkan drivers to co-exist and enables the use of Vulkan 
Layers.

• Layers are an API defined way to intercept the API calls and provide additional 
functionality.

• Vulkan drivers are referred to as an installable client drivers (ICD) and may expose one 
or more GPUs as a VkPhysicalDevice

https://github.com/KhronosGroup/Vulkan-Loader/blob/master/loader/LoaderAndLayerInterface.md

https://github.com/KhronosGroup/Vulkan-Loader/blob/master/loader/LoaderAndLayerInterface.md


7 © 2019 Arm Limited

WSI Layer Diagram

(Vulkan)
(VK_KHR_swapchain) (VK_KHR_surface) 

VK_KHR_wayland_surface VK_EXT_headless_surface

(VK_KHR_external_memory_fd) 
(VK_KHR_external_semaphore_fd) 

(VK_EXT_image_drm_format_modifier)

Vulkan
VK_KHR_external_memory_fd VK_KHR_external_semaphore_fd 

VK_EXT_image_drm_format_modifier

VK_KHR_swapchain VK_KHR_surface VK_KHR_wayland_surface

WSI Layer

Application

Khronos Loader

ICD

(APIs in brackets are exposed but rely on lower layers for implementation)



8 © 2019 Arm Limited

Getting existing WSI implementation in a Layer

• Intercept of VK_KHR_surface and VK_KHR_swapchain entrypoints.

• The Layer can be implicit always loaded by the loader, so from an Application point of 
view it is the same as with WSI extensions being implemented by the ICD.

• The common functionality is implemented through a shared interface by all windowing 
system specific implementations. Specific implementation is chosen based on the type 
encoded in the generic VkSurfaceKHR.

• Replaces the private image creation within a driver with the use of 
VK_EXT_image_drm_format_modifier

• Most of the difference between ICD implemented WSI Extension and a Vulkan Layer is 
in the added global bookkeeping to support multiple ICDs.



9 © 2019 Arm Limited

Layer Image Memory Allocation and Synchronization

• Two ways to allocate memory: Exporting DMA-BUF from the ICD itself or using a system memory 
allocator and importing the DMA-BUF into the Vulkan driver.

• Preference for exporting the memory from the GPU when it shares the same DRM driver with display but 
using a system memory allocator could be used for more or multiple vendors.

• Synchronization can be achieved by user space CPU threads and core Vulkan primitives - VkFence and 
VkSemaphore

• Alternatively Explicit Synchronization can be implemented by importing external fences (e.g. Sync FD 
with VK_KHR_external_fence_fd and VK_KHR_external_semaphore_fd)

• We may need to specify new Vulkan extensions in order to support implicit synchronisation within the 
Layer



10 © 2019 Arm Limited

Current status of the WSI Layer project

• Works as an implicit layer integrating with the Vulkan Loader and providing some basic 
bookkeeping per instance and device.

• Implements the generic Surface and Swapchain functionality providing the abstraction 
which needs to be implemented for windowing system specific support.

• Initially only implements VK_EXT_headless_surface

• Currently a Work in Progress Wayland support exists as a Merge Request for the 
project.

• Wayland support adds external memory allocator interface and a simple 
implementation using the ION allocator.

https://gitlab.freedesktop.org/mesa/vulkan-wsi-layer/merge_requests/2


11 © 2019 Arm Limited

Challenges

• Introduces some overhead for the WSI implementation.

• For most windowing systems, the implementation would rely on extension that are not 
widely supported – VK_EXT_image_drm_format_modifier

• Current implementation needs some issues addressed to properly implement the 
Vulkan specification and not leak unexpected calls to the ICD, e.g. Layout transition 
changes.

• May require a system memory allocator, which is not standard on Linux.

• May need to work more widely in defining new extensions if the currently published 
ones are not enough to support the interface between the WSI Layer and the ICD.



12 © 2019 Arm Limited

Benefits

• From a software engineering perspective separating windowing system code makes 
good sense and fits well as part of the Loader and Layers in Vulkan.

• Same code can be shared by all Vulkan drivers, which should benefit the ecosystem 
with more uniform support for windowing systems and features. This also 
encourages Vulkan implementors to support required extensions for import/export, 
which have other uses outside of WSI.

• Enables more developers to contribute and may make it easier for windowing system 
developers work on without knowing a full 3D graphics driver stack.

• If distributed separately from the Vulkan GPU driver it may allow easier updates for 
windowing system fixes.



1313

Thank You
Danke
Merci
谢谢
ありがとう
Gracias
Kiitos
감사합니다
धन्यवाद
תודה

© 2019 Arm Limited


