
1

The ieee802154 and
6lowpan Kernel Subsystems

LPC 2019
IoT Microconference

2019-09-09, Lisbon, Portugal

Stefan Schmidt
s.schmidt@samsung.com
Samsung Open Source Group

2

Who am I

● FOSS Contributor since 2006
● EFL Developer and Release Manager
● Linux Kernel ieee802154 subsystem

maintainer
● Team lead Open Source Group Samsung

Research UK

3

Agenda
● IPv6 over LoWPAN
● Routing
● Linux-wpan
● RTOS Systems

4

IPv6 over LoWPAN
(6LoWPAN)

5

Motivation 6LoWPAN

● Things might have restricted wireless connectivity
● Using IPv6 instead of something proprietary allows

the usage of existing and proven protocols driving

the Internet
● But unmodified TCP/IP protocol

headers can clash with MTU

limitations
● Things often only need to

transfer small amounts of data

Internet

IEEE 802.15.4

6

Movement Towards IP

● Many company grown network stacks moving towards IP
● Switching to make use of the success of IP
● The name Internet of Things already implies that it should be

modelled after the Internet
● Direct addressing of nodes and re-use of

proven protocols
● But TCP/IP is not one size fits all
● Adaptations needed for size, reduce

of header overhead, UDP to avoid

latencies, etc

7

Products

● Products with IEEE 802.15.4 transceivers

● Using 6LoWPAN or some version of Thread

● Nest Thermostat and Protect

● Google WiFi / OnHub router

● IKEA Tradfri system

8

Development Boards

● Ci40 Creator (CA-8210)

● Raspberry Pi’s with Openlabs shield (AT86RF233)

● Transceivers can be hooked up via SPI

(drivers have devicetree bindings)

● ATUSB USB dongle

9

IEEE 802.15.4

● IEEE specifications for Low-Rate Wireless Personal Area

Networks (LoWPAN)
● Not only low-rate, but also low-power
● PHY and MAC layer with star and peer-to-peer topologies
● Addressing but no routing defined
● Mesh routing possible with layers on top
● Designed for small sensors to run months/years on

battery with the right duty cycle
● 127 bytes MTU and 250 kbit/s
● Often mixed-up with ZigBee as it is used as PHY and MAC layer
● Compared to Bluetooth it is older than BTLE and less complex

10

6LoWPAN
● Physical and MAC layer defined by

IEEE 802.15.4

● Series of IETF specifications from
2007 onwards (RFCs 4944, 6282,
etc)

● Goal was to use IPv6 in sensor
networks based on IEEE 802.15.4

● Direct IP addressing of nodes

L3 Network Layer

L4 Transport Layer

L1 Physical Layer

L5 Application Layer

L2 Data Link Layer

IP

TCP | UDP | ICMP

Ethernet PHY

Application

Ethernet MAC

IPv6

UDP | ICMPv6

6LoWPAN

IEEE 802.15.4 PHY

Application

IEEE 802.15.4 MAC

● Adaptation layer between data-
link and network layer

● Address auto-configuration

● Frame encapsulation and
fragmentation

● Header compressions

11

Address Auto-configuration &
Fragmentation

Stateless address auto-configuration:
● Used for IPv6 networks without DHCP
● Based on layer 2 address
● Extended address uses EUI-64 as is
● Short address uses EUI-48 to EUI-64 mapping

(16 Bit PAN+16 Bit zero+16 Bit short address)

Fragmentation:
● IPv6 requires the link to allow for a MTU of at least 1280 bytes
● Impossible to handle in the 127 bytes MTU of IEEE 802.15.4
● 6LoWPAN adds a 11 bit fragmentation header allows for 2048 bytes
● Fragmentation should still be avoided for best performance

12

The Header Size Problem

● Worst-case scenario calculations
● Maximum frame size in IEEE 802.15.4: 127 bytes
● Reduced by the max. frame header (25 bytes): 102 bytes
● Reduced by highest link-layer security (21 bytes): 81 bytes
● Reduced by standard IPv6 header (40 bytes): 41 bytes
● Reduced by standard UDP header (8 bytes): 33 bytes
● This leaves only 33 bytes for actual payload
● The rest of the space is used by headers (~ 3:1 ratio)

Frame Header (25) LLSEC (21) IPv6 Header (40) UDP Payload (33)

13

The Header Size Solution

● IPv6 with link-local and UDP on top
● IPHC with NHC for UDP
● The 48 bytes IPv6 + UDP header could in

the best cases be reduced to 6 bytes
● That allows for a payload of 75 bytes (~ 2:3

ratio)
Frame Header (25) LLSEC (21) 6 Payload (75)

Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1) UDP Checksum (2)

14

More 6lo Adaptations

● Specifications work in progress for other L2 technologies
● Handling of different address or MTU sizes (fragmentation)
● IPHC and other compressions as the main benefit
● IPv6 over Bluetooth LE (RFC7668), 6lowpan shared with BlueZ
● NFC
● DECT Ultra Low Energy
● PowerLine (PLC)
● 6loBAC: Token passing network on RS-485
● 802.11ah: low energy and long distance WiFi

15

Routing: Mesh-under and
Route-over

16

Mesh-under
● Allow for fast forwarding of packets without travelling the IP stack
● IEEE 802.15.4 does not include mesh routing in the MAC

specification
● Thus the mesh implementations is an extra layer above the MAC

but below the network layer
● Various (proprietary) implementations (e.g. WirelessHART, ZigBee

mesh, RF mesh, etc)
● IEEE 802.15.5 can also to be used for mesh on top of 15.4
● 6LoWPAN specification has a field for mesh headers
● No support in Linux-wpan for mesh header as of now
● Lost fragments of bigger packets will cause troubles

17

RPL
● Routing protocol for low power and lossy networks
● IETF approach, route over protocol
● IPv6 Routing Protocol for Low-Power and

Lossy Networks (RFC6550, RFC6553)
● RPL uses option in the Hop-by-Hop header of IPv6
● Constructs a directed acyclic graph in an attempt to minimize

routing costs
● Implementations in RIOT, Contiki, Zephyr, etc
● Unstrung as Linux user-space reference
● Rpld as alternative released two weeks ago

https://github.com/linux-wpan/rpld

https://github.com/linux-wpan/rpld

18

Thread
● Mesh network specification from Thread Group
● OpenThread implementation from NestLabs
● Routing Information Protocol (RIP) algorithms are

used, but not RIP itself
● Distribution of route information is handled by mesh

link establishment (MLE, IETF draft)
● MLE allows router to update the tables of routing

costs periodically in a compressed form
● Due to MLE no on-demand route discovery is needed

19

Linux-wpan

20

Why linux-wpan?

● Goal: IEEE 802.15.4 and 6LoWPAN support in mainline
● Platforms already running Linux would benefit from

native IEEE 802.15.4 and 6LoWPAN subsystems
● IEEE 802.15.4 transceivers can easily be added to

existing hardware designs (SPI + few GPIOs)
● Battery powered sensors are more likely to run an OS like

RIOT, Contiki or Zephyr, but they need a border router
● Started in 2008 as linux-zigbee project, from 2012

mainline (renamed to linux-wpan)

21

Current Status
● 6LoWPAN with fragmentation and reassembly (RFC

4944)
● Header compression with IP header compression (IPHC)

and next header compression (NHC) for UDP

(RFC 6282), shared with Bluetooth subsystem
● ieee802154 layer with softMAC drivers for at86rf2xx,

mrf24j40, cc2520, atusb, adf7242, ca8210 and mcr20a
● Hwsim virtual driver module for testing
● USB dongle to be used on your workstation
● Link Layer Security

22

Interface Bringup
● The wpan0 interface shows up automatically
● Ieee802154 specific configuration over netlink, e.g. with

wpan-tools
● Setting up the basic parameters:

$ ip link set lowpan0 down

$ ip link set wpan0 down

$ iwpan dev wpan0 set pan_id 0xabcd

$ iwpan phy phy0 set channel 0 26

$ ip link add link wpan0 name lowpan0 type lowpan

$ ip link set wpan0 up

$ ip link set lowpan0 up

23

Monitoring
● Setting up the interface in promiscuous mode:

$ iwpan dev wpan0 del

$ iwpan phy phy0 interface add monitor%d type monitor

$ iwpan phy phy0 set channel 0 26

$ ip link set monitor0 up

$ wireshark -i monitor0

● No automatic channel hopping (changing the

channel manually in the background is possible)

24

AF_INET6 Socket

● Can be used like a normal IPv6 socket
● Transparently handled

sd = socket(PF_INET6, SOCK_DGRAM, 0);

dst.sin6_family = AF_INET6;

sendto(sd, ...);

25

AF_IEEE802154 Socket

● Direct IEEE 802.15.4 communication
● Short and extended addressing schemes as well as network PAN ID handling

sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);

dst.family = AF_IEEE802154;

dst.addr.pan_id = 0x0023;

dst.addr.addr_type = IEEE802154_ADDR_LONG;

memcpy(&dst.addr.hwaddr, long_addr, IEEE802154_ADDR_LEN);

or

dst.addr.addr_type = IEEE802154_ADDR_SHORT;

dst.addr.short_addr = 0x0002;

sendto(sd, ...);

26

Linux-wpan Future

● Implement missing parts of the IEEE 802.15.4 specification
● Beacon and MAC command frame support
● Coordinator support in MAC layer and wpan-tools
● Scanning

● Add better support for HardMAC transceivers
● Neighbour Discovery Optimizations (RFC 6775), started
● Configuration interface for various header compression

modules
● Expose information for route-over and mesh-under protocols (started

with LQI already)
● Work on rpld to understand and support route over use cases

27

RTOS Systems

28

RTOS Systems
● Various real time operating systems support

IEEE 802.15.4 and 6lowpan
● RIOT
● Contiki
● Zephyr
● OpenThread
● MbedOS (nanostack finally open source from

mbed-os-5.7 onwards)

29

Comparison

Feature Linux RIOT Contiki Zephyr Thread

IEEE 802.15.4: data and ACK frames ✔ ✔ ✔ ✔ ✔

IEEE 802.15.4: beacon and MAC command frames ✘ ✘ ✘ ✔ ✔

IEEE 802.15.4: scanning, joining, PAN coordinator ✘ ✘ ✘ ✔ ✔

IEEE 802.15.4: link layer security ✔ ✘ ✔ ✔ ✔

6LoWPAN: frame encapsulation, fragmentation, addressing ✔ ✔ ✔ ✔ ✔

6LoWPAN: IP header compression (RFC 6282) ✔ ✔ ✔ ✔ ✔

6LoWPAN: next header compression, UDP only (RFC 6282) ✔ ✔ ✔ ✔ ✔

6LoWPAN: generic header compression (RFC 7400) ✘ ✘ ✘ ✘ ✘

6LoWPAN: neighbor discovery optimizations (RFC 6775) Partial ✔ ✘ ✘ ✘

RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks ✔ ✔ ✔ ✔ ✘

Mesh link establishment draft ✘ ✘ ✘ ✔ ✔

30

Take away

● 6LoWPAN and associated specifications allow

the use of IPv6 on constrained networks
● Running a IEEE 802.15.4 wireless network is

not hard
● Linux tooling and kernel support is already

there
● Various RTOS implementations to choose from as

counterparts on a simple Thing

31

Thank you!

32

References

● IEEE 802.15.4 specification (PHY and MAC layer)

http://standards.ieee.org/about/get/802/802.15.html

● RFC 4944: Transmission of IPv6 Packets over IEEE 802.15.4 Networks

https://tools.ietf.org/html/rfc4944

● RFC 6282: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks

https://tools.ietf.org/html/rfc6282

● RFC 7400: 6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs)

https://tools.ietf.org/html/rfc7400Lossy Networks
● Linux-wpan source (wpan-tools & rpld) and project pages

https://github.com/linux-wpan

http://wpan.cakelab.org/

http://standards.ieee.org/about/get/802/802.15.html
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc7400
https://github.com/linux-wpan
http://wpan.cakelab.org/

33

Bonus Slides

34

Bonus: Homemade
6lowpan network

● For the makers and hackers
● IKEA Tradfri system based on ieee802154 and Zigbee Light Link protocol
● Cheap 15.4 based equipment (light bulbs, dimmer buttons, remotes,

motion sensors)
● The cheapest light bulb (~10 USD) can be opened and flashed without

destroying it
● Initial support for the chip in RIOT-OS opens up many possibilities for

your own homemade 6lowpan network
● Silicon Labs EFR32 microcontroller (ARM Cortex M4, 256 kB flash, 32 kB

RAM)
● No playground for Linux, but OpenThread should be possible
● https://github.com/basilfx/TRADFRI-Hacking/

https://github.com/basilfx/TRADFRI-Hacking/

35

IPv6 Header Compression (IPHC)

IPHC (RFC6282)
● Deprecates HC1 & HC2 compressions from RFC4944
● Better compression for global and multicast address, not only link-local
● Compress header fields with common values: version, traffic class, flow

label, hop limit
● NHC IPv6 Extension Header compression (RFC6282)

– Hop-by-Hop, Routing Header, Fragment Header, Destination Options Header,

Mobility Header
● NHC UDP Header compression (RFC6282)

– Compressing ports range to 4 bits
– Allows to omit the UDP checksum for cases where upper layers handle

message integrity checks

36

IPHC & NHC

● Defining some default values in IPv6 header
– Version == 6, traffic class & flow-label == 0, hop-limit only well-known values (1, 64,

255)
– Remove the payload length (available in 6LoWPAN fragment header or data-link header)

● IPv6 stateless address auto configuration based on L2 address
– Omit the IPv6 prefix (global known by network, link-local defined by compression
– Prefixes can be shared through context ID table (e.g. subnet of your cloud infrastructure)
– Extended: EUI-64 L2 address use as is, short: pseudo 48 bit address

Version

Source Address

(128 bit)

Destination Address

(128 bit)

Traffic Class Flow Label (20 bit)

Payload Length (16 bit) Next Header Hop Limit (8 bit)

Source Address

Dispatch

6LoWPAN Header IPHC multi-hop (7 bytes)

Hop LimitLoWPAN_IPHC

Destination Address

Dispatch

6LoWPAN Header IPHC link-local (2 bytes)

LoWPAN_IPHC

37

Generic Header Compression

● Generic approach instead of defining a scheme for each

header
● Plugging into NHC
● Useful for header like payload e.g. DTLS or RPL (addresses

elided from dictionary)
● 6CIO option in neighbour discovery messages to indicate

support
● LZ-77 style compression with byte codes (RFC7400)

– Appending zeroes, back referencing to a static dictionary and copy

38

 Kselftest support

● Hwsim will be hooked up with kselftest to give
an easy way of regression testing

● Will be used in review process
● Can be used when doing a bigger network

stack re-work
● Basic suite of tests to start with (ieee802154

frames in different sizes, 6lowpan packets in
different sizes, header compression on and off)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

