SGX Upstreaming Story

Linux Plumbers Conference 2019

Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>



First, a little bit of history

Skylake 2015
First attempt 2016/04/25:

m Only Intel blessed enclaves :(
m https://lwn.net/Articles/686808/

At LPC 2016 first plans for flexible launch control.

In September 2017 new series was started.

In December Geminilake launchedx.
https://lwn.net/Articles/786487/

Latest version is v22.


https://lwn.net/Articles/686808/
https://lwn.net/Articles/786487/

Enclaves

m Reserved address space.

Memory is committed from a reserved memory area called
Enclave Page Cache (EPC).

Predefined entry points (ring-3).
CPU asserted access.

Memory encryption (outside LLC).

Local and remote attestation.



The kernel assets

m Sources
m arch/x86/kernel /cpu/sgx
m tools/testing/selftests/x86 /sgx
m Devices
m /dev/sgx/enclave
B SGX_IOC_ENCLAVE_CREATE
m SGX_IOC_ENCLAVE_ADD_PAGE

m SGX_IOC_ENCLAVE_INIT
B SGX_IOC_ENCLAVE_SET_ATTRIBUTE

m /dev/sgx/provision
m Community

m linux-sgx@vger.kernel.org
m https://github.com/jsakkine-intel /linux-sgx.git



The kernel assets: arch/x86/kernel /cpu/sgx

$ wc -1 arch/x86/kernel/cpu/sgx/*

423
275
34
718
133
56
263
721
311
5
472
89
3500

arch/x86/kernel/cpu/sgx/arch.h
arch/x86/kernel/cpu/sgx/driver.c
arch/x86/kernel/cpu/sgx/driver.h
arch/x86/kernel/cpu/sgx/encl.c
arch/x86/kernel/cpu/sgx/encl.h
arch/x86/kernel/cpu/sgx/encls.c
arch/x86/kernel/cpu/sgx/encls.h
arch/x86/kernel/cpu/sgx/ioctl.c
arch/x86/kernel/cpu/sgx/main.c
arch/x86/kernel/cpu/sgx/Makefile
arch/x86/kernel/cpu/sgx/reclaim.c
arch/x86/kernel/cpu/sgx/sgx.h
total



The kernel assets: tools/testing/selftests/x86/sgx

$ wc -1 tools/testing/selftests/x86/sgx/x*

39
94
20
34
371
47
49
493
39
1186

tools/testing/selftests/x86/sgx/defines.h
tools/testing/selftests/x86/sgx/encl _bootstrap.S
tools/testing/selftests/x86/sgx/encl.c
tools/testing/selftests/x86/sgx/encl.lds
tools/testing/selftests/x86/sgx/main.c
tools/testing/selftests/x86/sgx/Makefile
tools/testing/selftests/x86/sgx/sgx_call.S
tools/testing/selftests/x86/sgx/sgxsign.c
tools/testing/selftests/x86/sgx/signing key.pem
total



A short breakdown

Constructing enclaves (/dev/sgx/enclave)

Executing enclaves

n
n

m Overcommitment

m Access control (e.g. DAC, SELinux, AppArmor)
n

Provisioning (/dev/sgx/provision)



Constructing enclaves

/dev/sgx/enclave
mmap () with PROT_NONE.
m SGX_IOC_ENCLAVE_CREATE (secs)

m SGX Enclave Control Structure (SECS)
SGX_IOC_ENCLAVE_ADD_PAGE (addr, page, secinfo, mrmask)
SGX_IOC_ENCLAVE_INIT (sigstruct)
mprotect () (capped by EADD)

m vma->may_protect ()



Constructing enclaves: ENCLS[EINIT]

IA32_SGXLEPUBKEYHASH{O0, 1, 2, 3} MSRs

FEATURE_CONTROL_SGX_LE_WR
Locked MSRs: requires a Launch Enclave.
m Tokens generated by the LE and passed to EINIT.

m Linux runs enclaves only with unlocked MSRs.



Executing enclaves

m ENCLU[EENTER] (rbx=TCS, rcx=AEP /rip successor)

m Thread Control Structure (TCS)
m Asynchronous Exit Point (AEP)

m Exit to Asychronous Exit Point (AEP).
m ENCLU[ERESUME] (rbx=TCS, rex=AEP)

m ENCLU[EEXIT] (rbx=outside address, rcx=AEP)



Executing enclaves: TCS

.section ".tcs", "a"

.balign 4096

L£i11 1, 8, 0

Lfi1l 1, 8, 0

.quad encl_ssa

Lfill 1, 4, 0

L£i11 1, 4, 1

.quad encl_entry

L£i11 1, 8, 0

L£i11 1, 8, 0

.£i1l1 1, 8, 0

L£i11 1, 4, OxFFFFFFFF
.£i11 1, 4, OxFFFFFFFF

Lfill

b

4024, 1, O

H o o o # # F oo ¥ oo

STATE (set by CPU)
FLAGS

0SSA

CSSA (set by CPU)
NSSA

OENTRY

AEP (set by EENTER/RESUME)
OFSBASE

OGSBASE

FSLIMIT (32-bit)
GSLIMIT (32-bit)
Reserved



Executing enclaves: __vdso_sgx enter enclave

Enclaves generate exceptions as part of their normal operation.
Permisson conflict: #PF with PF_SGX

Illegal instructions: #UD
m https://software.intel.com/en-us/node/703005

m __vdso_sgx_enter_enclave
m Exception: di=exception (e.g. #PF), si=error (e.g. PF_SGX),
rdx=addr


https://software.intel.com/en-us/node/703005

Access control: DAC

m /dev/sgx/enclave permissions control who can build enclaves.

m The build process also caps mmap() and mprotect().

m /dev/sgx/provision permissions control who can grant access
to provision an enclave.

m Enclaves always need an outside delegate for syscalls. They
can read and write process memory but cannot affect outside
system.

m The end game is that there needs to be a process that is able
to change writable pages executable pages unconditionally.



Access control: LSM hooks

m security enclave load(vma, prot): Allow LSM intervene
when a a page is loaded into enclave.
m Prevent loading a non-executable file.
m Deny WX from unprivileged process (as defined by the LSM).
m security enclave map(vma, prot): Allow LSM intervene
mmap() or mprotect() of an enclave.
m Deny WX.



Access control: LSM hooks

That's all folks, thank you.



