
Morten Rasmussen <morten.rasmussen@arm.com>

Linux Plumbers Conference 2019, 9-11 September, Lisbon

Performance guarantees
under thermal pressure

mailto:morten.rasmussen@arm.com


2 © 2019 Arm Limited 

Unpredictable compute bandwidth

• Compute bandwidth is increasingly becoming unpredictable.

• In mobile systems performance capping is a common scenario.

• User-space has no information about minimum compute bandwidth.

CPU GPU

NPU ModemCPU 0 1 2 3 4 5 6 7

cap

cap

Domain 0 Domain 1



3 © 2019 Arm Limited 

Is best effort compute enough?

• Current Linux kernel model:
• User creates tasks, the kernel and platform delivers as good performance as it can.
• User can tweak task placement and cpufreq governors (including util_clamp) but kernel and/or 

platform can override most of it.

• SCHED_DEADLINE is reservation-based and implies a bandwidth guarantee.

• Reservations are not cleared with thermal framework and could be impossible to fulfill.

• Should we have a “guaranteed” performance level that SCHED_DEADLINE could use for 
admission control?

• What level of “guarantee” should it provide?

• Who should provide it? DT, ACPI?



Morten Rasmussen <morten.rasmussen@arm.com>

Linux Plumbers Conference 2019, 9-11 September, Lisbon

Task-centric thermal 
management

mailto:morten.rasmussen@arm.com


5 © 2019 Arm Limited 

CPU thermal management in Linux

• Most systems control thermally unsustainable compute demand by performance 
capping.

• Control is performance domain-centric (clock domain) capping one or more CPUs 
together.
• No knowledge about relative importance of tasks on the CPUs in each performance domain.
• No knowledge about how to best spend the thermal budget.
• Scheduler might help tasks to “escape” capped CPUs moving the problem somewhere else.

CPU 0 1 2 3 4 5 6 7

cap

cap

Domain 0 Domain 1



6 © 2019 Arm Limited 

Task-centric thermal management

• Ideally thermal management should maintain the budget while minimizing the 
perceived performance impact.

• Middleware/application is best positioned to decide the budget split.

• If tasks would self-adapt their compute demand, it would be even better.

CPU 0 1 2 3 4 5 6 7

importantLess important

Domain 0 Domain 1



7 © 2019 Arm Limited 

Power management mechanisms

• Applications
• Self-adapting apps1, util_clamp capping.

• Middleware:
• cgroup bandwidth controller, (util_clamp capping).

• Kernel:
• IPA, cpufreq (DVFS), hot-plugging, (cgroup bandwidth controller).

• Firmware:
• Frequency capping.

• Adapting demand is preferable to reducing compute bandwidth.

• Middleware or Kernel steps in controlling the bandwidth if applications don’t behave.

Controlling

compute demand

Controlling

compute bandwidth

1 https://blogs.unity3d.com/2019/04/01/higher-fidelity-and-smoother-frame-rates-with-adaptive-performance/

https://blogs.unity3d.com/2019/04/01/higher-fidelity-and-smoother-frame-rates-with-adaptive-performance/


8 © 2019 Arm Limited 

Performance management hierarchy

U
se

r-
sp

ac
e

M
id

d
le

w
ar

e
K

er
n

el
Fi

rm
w

ar
e

EAS IPA

cpufreq

Android runtime

PowerHAL

Thermal Control

Task 0 Task 1

cpuidle

Counters

Budget feedback

Delivered performance

Performance request 
& Actual demand

Can we have a generic thermal 
budget headroom metric 
provided by the thermal 
framework?


