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Unpredictable compute bandwidth

2

Compute bandwidth is increasingly becoming unpredictable.
In mobile systems performance capping is a common scenario.

User-space has no information about minimum compute bandwidth.
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s best effort compute enough?

Current Linux kernel model:
- User creates tasks, the kernel and platform delivers as good performance as it can.
- User can tweak task placement and cpufreq governors (including util_clamp) but kernel and/or
platform can override most of it.

SCHED_DEADLINE is reservation-based and implies a bandwidth guarantee.

Reservations are not cleared with thermal framework and could be impossible to fulfill.

Should we have a “guaranteed” performance level that SCHED DEADLINE could use for
admission control?

What level of “guarantee” should it provide?
Who should provide it? DT, ACPI?
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CPU thermal management in Linux

* Most systems control thermally unsustainable compute demand by performance

capping.
* Control is performance domain-centric (clock domain) capping one or more CPUs
together.
- No knowledge about relative importance of tasks on the CPUs in each performance domain.

- No knowledge about how to best spend the thermal budget.
« Scheduler might help tasks to “escape” capped CPUs moving the problem somewhere else.
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Task-centric thermal management

* I|deally thermal management should maintain the budget while minimizing the
perceived performance impact.

* Middleware/application is best positioned to decide the budget split.
* If tasks would self-adapt their compute demand, it would be even better.

Less important important
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Power management mechanisms

Applications _ Controlling

- Self-adapting apps?, util_clamp capping. ] compute demand
Middleware:

- cgroup bandwidth controller, (util_clamp capping).
Kernel ContrO”ing

- |IPA, cpufreq (DVFS), hetplugeing, (cgroup bandwidth controller). compute bandwidth
Firmware:

- Frequency capping. i

Adapting demand is preferable to reducing compute bandwidth.
Middleware or Kernel steps in controlling the bandwidth if applications don’t behave.

1 https://blogs.unity3d.com/2019/04/01/higher-fidelity-and-smoother-frame-rates-with-adaptive-performance/
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Performance management hierarchy

Budget feedback

Delivered performance

User-space
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3
- PowerHAL '> Performance request
7 . & Actual demand
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Ml Thermal | :
s ermal Contro Can we have a generic thermal
.§ budget headroom metric

provided by the thermal
ramework?
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