- + T+ +
N <mon.rasmussena rm.com>

2 20 *g-ll September, Lisbon

é‘p



mailto:morten.rasmussen@arm.com

Unpredictable compute bandwidth

2

Compute bandwidth is increasingly becoming unpredictable.
In mobile systems performance capping is a common scenario.

User-space has no information about minimum compute bandwidth.

cap

CPU O 1 2

3
_

\
Y
Domain O

© 2019 Arm Limited

cap

\

5 6

7
J

Y
Domain 1

/
/

arm



s best effort compute enough?

Current Linux kernel model:
- User creates tasks, the kernel and platform delivers as good performance as it can.
- User can tweak task placement and cpufreq governors (including util_clamp) but kernel and/or
platform can override most of it.

SCHED_DEADLINE is reservation-based and implies a bandwidth guarantee.

Reservations are not cleared with thermal framework and could be impossible to fulfill.

Should we have a “guaranteed” performance level that SCHED DEADLINE could use for
admission control?

What level of “guarantee” should it provide?
Who should provide it? DT, ACPI?

© 2019 Arm Limited q rm



m- 2N.rasmussen@arm.com>
e 20 111 September, Lisbon
S B X + + +
. »

iy



mailto:morten.rasmussen@arm.com

CPU thermal management in Linux

* Most systems control thermally unsustainable compute demand by performance

capping.
* Control is performance domain-centric (clock domain) capping one or more CPUs
together.
- No knowledge about relative importance of tasks on the CPUs in each performance domain.

- No knowledge about how to best spend the thermal budget.
« Scheduler might help tasks to “escape” capped CPUs moving the problem somewhere else.

cap

cap

CPU O 1 2 3 4 5 6 7
l'J \'J

Domain O Domain 1
arm

5 © 2019 Arm Limited



Task-centric thermal management

* I|deally thermal management should maintain the budget while minimizing the
perceived performance impact.

* Middleware/application is best positioned to decide the budget split.
* If tasks would self-adapt their compute demand, it would be even better.

Less important important

\ /

CPU O 1 2 3 4 5 6 7
l'J \'J

Domain O Domain 1

6 © 2019 Arm Limited a rm




Power management mechanisms

Applications _ Controlling

- Self-adapting apps?, util_clamp capping. ] compute demand
Middleware:

- cgroup bandwidth controller, (util_clamp capping).
Kernel ContrO”ing

- |IPA, cpufreq (DVFS), hetplugeing, (cgroup bandwidth controller). compute bandwidth
Firmware:

- Frequency capping. i

Adapting demand is preferable to reducing compute bandwidth.
Middleware or Kernel steps in controlling the bandwidth if applications don’t behave.

1 https://blogs.unity3d.com/2019/04/01/higher-fidelity-and-smoother-frame-rates-with-adaptive-performance/

© 2019 Arm Limited q rm



https://blogs.unity3d.com/2019/04/01/higher-fidelity-and-smoother-frame-rates-with-adaptive-performance/

Performance management hierarchy

Budget feedback

Delivered performance

User-space

(]
3
- PowerHAL '> Performance request
7 . & Actual demand

S

o
[¢] -
Ml Thermal | :
s ermal Contro Can we have a generic thermal
.§ budget headroom metric

provided by the thermal
ramework?

8 © 2019 Arm Limited a r m



