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Application workloads are becoming increasingly diverse in terms of their network resource requirements
and performance characteristics. As opposed to long running monoliths deployed in virtual machines, con-
tainerized workloads can be as short lived as few seconds. Today, container orchestrators that schedule these
workloads primarily consider their CPU and memory resource requirements since they can easily be quan-
tified. However, network resources characterization isn’t as straight forward. Ineffective scheduling of con-
tainerized workloads, which could be throughput intensive or latency sensitive, can lead to adverse network
performance. Hence, I propose characterizing and learning network footprints of applications running in a
cluster, which can be used while scheduling them in containers/VMs such that their network performance
can be improved.

There is a well-known network issue, which is achieving low latency for mice flows (those that send relatively
small amounts of data) by separating them from the elephant flows (those that send a lot of data). I’ve written
an eBPF program in C that runs at various hook points in the Linux connection tracking (aka conntrack)
kernel functions in order to detect network elephant flow, and attribute them to the container or VM, where
the flows ingress or egress from. The agent that loads this eBPF program from user space runs in every host
in a cluster. It then feeds this learnt information to a container (or VM) scheduling system such that they can
use this information proactively, while scheduling containerized workloads with light network footprint (e.g.,
microservices, functions) and heavy network footprint (e.g., data analytics, data computational applications)
on the same cluster, in order to improve their latency and throughput, respectively.

eBPF facilitates running the programs with minimal CPU overhead, in a pluggable, tunable and safe manner,
and without having to change any kernel code. It’s also worthwhile to discuss how the workload’s learnt
network footprint can be used for dynamically allocating or tuning Linux network resources like bandwidth,
vcpu/vhost-net allocation, receive-side scaling (RSS) queue mappings, etc.
I’ll submit a paper with the (working) source code snippets and details if the talk is accepted.
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