
Traffic Footprint Characterization of Workloads
using BPF

Aditi Ghag, Yaniv Ben-Itzhak, Justin Pettit, Ben Pfaff
VMware

aghag@vmware.com

ABSTRACT
Application workloads are becoming increasingly diverse
in terms of their network resource requirements and perfor-
mance characteristics. As opposed to long running monoliths
deployed in virtual machines, containerized workloads can
be as short lived as few seconds or minutes or in case of
microservices, highly distributed and communication inten-
sive. Quantifying network resource requirements of applica-
tion workloads is a challenging problem since network is a
highly dynamic and distributed resource. Getting visibility
into network characteristics of diverse workloads will enable
their intelligent placement in container or VMs on a common
infrastructure. Today, container orchestrators that schedule
these workloads primarily consider their CPU and memory
resource requirements since they can easily be quantified.
However, network resources characterization isn't as straight
forward. Ineffective scheduling of containerized workloads,
which could be throughput intensive or latency sensitive, can
lead to adverse network performance. Hence, this work pro-
poses an eBPF (extended Berkeley Packet Filter) based frame-
work that characterizes and learns network footprints of ap-
plications running in a cluster, and thereby making network a
first class citizen in areas like container scheduling.

1 KEYWORDS
BPF, Linux, networking, Conntrack, resource scheduling

2 INTRODUCTION
Data centers and cloud environments host workloads that are
quite diverse in terms of their network resource requirements
and performance characteristics. There are latency-sensitive
applications like web search queries or front-end applications,
or in-memory key-value stores such as Redis that are used
as caching layers. These applications tend to have stringent
tail latency requirements, that are usually defined by SLA
terms like the 99th percentile response latency. On the other
hand, there are applications like data analytics, file transfers,
Hadoop that are throughout intensive. Their large throughput
requirements are usually satisfied by the large available capac-
ity in 10GB+ in virtualized environments. On the other side
of the spectrum, there are workloads like Functions that can
be as short-lived as few seconds or minutes or microservices,

which are highly distributed and communication intensive. In
case of microservice applications, services are deployed in
containers and they make calls over the network to execute
end-to-end business logic. Inter-services network calls, thus,
cumulatively contribute to end to end application response
time.

There has been a recent trend, where these applications are
being containerized, and they are deployed by a container or-
chestrations platform like Kubernetes. An effective resource
scheduler needs to account for the performance requirements
of diverse workloads while scheduling them on a common
infrastructure. Container orchestrators, such as Swarm [9],
Mesos [1], and Kubernetes [6] are the leading orchestration
platforms. In this paper, we focus on Kubernetes, which is one
of the most popular orchestrators used in the industry. How-
ever, the ideas proposed in this paper are generally applicable
to other orchestrators as well. A Kubernetes cluster is formed
from a master node, and a pool of worker nodes. In most de-
ployments, these nodes are virtual machines. The master node
runs all the Kubernetes control plane components, including
the scheduler. The scheduler manages groups of containers,
referred to as pods, and schedules them by deciding which
worker node should host each pod 1. Currently, the scheduling
decisions [5] are made based on availability of resources like
CPU, memory, disk, etc and some policy constraints. Given
that applications §2 rely on network, we propose to augment
Kubernetes scheduler with network awareness about the net-
work characteristics of application workloads. In this paper,
we take an approach to build an eBPF based framework in or-
der to learn and characterize network footprint characteristics
of application workloads. We further show how this enhanced
information can be used to augment current container sched-
ulers.

The next section describes how workloads can be charac-
terized based on their network footprint. This is followed by
implementation details of the eBPF based framework, traffic
footprint-aware container scheduling and future work.

1In this paper, we use pods and containers interchangeably.

1



Linux Plumbers Conference, September 9-11, 2019, Lisbon, PortugalAditi Ghag, Yaniv Ben-Itzhak, Justin Pettit, Ben Pfaff

3 CHARACTERIZATION OF
WORKLOADS

This section describes how workloads can be characterized
based on their network footprint.

3.1 Latency v/s Throughput
We focus on a well known network issue, which is achieving
low latency for mice flows (those that send relatively little
amounts of data) by separating them from the elephant flows
(those that send a lot of data). Research shows that these
elephant flows tend to fill network buffers [12, 15, 21], pe-
nalizing the throughput and tail latency of delay-sensitive
mice flows and coflows, that is, collections of flows with a
shared completion time [13, 14, 19, 22]. Most microservices
traffic consist of mice flows from short API call requests and
responses, which can get drowned out by other microservices
running elephant flows. Automatically identifying the mice
and elephant microservices flows becomes really important.
We distinguish throughput and latency considerations, since
the former can be satisfied by the large available capacity
(10+ Gbps) in virtualized environments, even when multiple
workloads are sharing the network bandwidth. We distinguish
throughput and latency considerations, since the former can
be satisfied by the large available capacity (10+ Gbps) in vir-
tualized environments, even when multiple microservices are
sharing the network bandwidth.

3.1.1 Co-located Elephant and Mice flows. To learn
how heavy network footprint microservices affect light net-
work footprint microservices, we conducted several tests by
creating different combinations of these deployed in a Kuber-
netes cluster. We deployed 2 KVM hypervisors with worker
nodes, as depicted in Figure 1. We then deployed pairs of pods
to generate flows of the desired kinds, using iperf pairs to
generate elephants and sockperf pairs for mice. For differ-
ent placements of client-server pod pairs, we measured the
latency experienced by the mice flows.

Figure 1 shows the results. The baseline 99th percentile
latency of sockperf was 0.28 ms when its client and server
pods are deployed in the same hypervisor. Deployed across
two different hypervisors, the latency increased 4× to 1.16 ms.
Co-locating sockperf pods with iperf pods on a single
worker node increased mice latency by 12× to 3.32 ms. We
measured the worst mice latency when paired iperf and
sockperf pods were both separated across different hyper-
visors, at 14.04 ms or 50× baseline. We observed a similar
spike in latency if we co-located the sockperf client or
server onto the same worker node as the iperf client. This
demonstrates how detecting nodes running containers that

Figure 1: Sockperf client 99th percentile latency for dif-
ferent placements of sockperf (mice) and iperf (elephant)
pods
are contributing to elephant flows, in addition to identify-
ing the hypervisors that source and sink these flows, can aid
scheduling light network footprint microservices.

3.2 Characterizing the Network Footprint
We say that workloads that source or sink elephant flows
have a heavy network footprint and that others have a light
footprint. A naive scheduling algorithm can potentially harm
performance by scheduling heavy and light footprint con-
tainerized workloads into the same node. Hence, we built a
framework to learn workloads’ network footprints and explic-
itly tag those with heavy footprints. When new instances of
these tagged containers are deployed later, the scheduler tries
to keep them away from light footprint containers.

3.3 Detecting and Mapping Elephant Flows
in End Hosts

Past research proposing sampling and in-network elephant
detection solutions [11, 15, 20] focus mainly on detecting
elephant flows, without focusing on locating their sources or
sinks. To identify the flows’ endpoints VMs or containers,
one would have to track the IP addresses associated with
these VMs and containers, which might not scale well for
environments running containers at a huge scale.

Moreover, in overlay network-based virtualized environ-
ments, containers or VMs traffic get encapsulated, and mul-
tiple tenant networks can have overlapping subnets. In such
cases, more information such as virtual network identifier
(VNI) [4, 10] needs to be extracted from encapsulation head-
ers in order to identify VM and container endpoints from
flow level data. For these reasons, we leverage eBPF to map
elephant flows to their corresponding container (see § 4.1
and 4.2 for details).

4 IMPLEMENTATION
This section describes the eBPF based traffic footprint char-
acterization framework in detail.

2



Traffic Footprint Characterization of Workloads using BPFLinux Plumbers Conference, September 9-11, 2019, Lisbon, Portugal

Figure 2: Traffic footprint-aware Container Scheduling

4.1 eBPF
To detect runtime behavior in the hypervisor, we leveraged ex-
tensions to the BPF subsystem in recent versions of the Linux
kernel. BPF [2] has been used in networking for decades,
primarily for filtering network packets. For example, when a
tcpdump user specifies a packet filter, tcpdump translates
the filter into a small BPF program and passes it to the kernel.
The kernel checks the program for safety and then runs it on
every received packet.

BPF was originally a simple stack-based virtual machine.
Recent Linux kernels have enhanced BPF to look like a mod-
ern CPU, which makes it able to run larger programs more
efficiently. These extended BPF, or eBPF [3], programs can
be configured to run at various hook points in the kernel. Hook
points now exist in nearly every subsystem within the Linux
kernel [16]. Using appropriate hook points, the eBPF program
can safely and efficiently retrieve runtime information from
the hypervisor kernel.

4.2 Detecting and Mapping Elephant Flows
Using eBPF

We used Linux kernel connection tracking functionality, called
conntrack, which tracks the lifecycle of every flow and main-
tains flow-level statistics. We wrote an eBPF program in C,
which traces three conntrack kernel module functions to get
flow-level information.

4.2.1 Data Structures. The eBPF program creates a
BPF map to store flow-level attributes. The BPF map key and
value structures are listed below. The key is a struct containing
5-tuple using which a flow is identified. The value structure
comprises of flow attributes like interface, where the flow
originated from, timestamp to keep track of flow duration,
conntrack zone identifier (usage is explained in section §4.3),
and a flag that indicates whether a flow is an Elephant flow.

s t r u c t f low_key
{

u32 s r c _ a d d r ;
u32 d s t _ a d d r ;
u16 s r c _ p o r t ;
u16 d s t _ p o r t ;
u8 p r o t o c o l ;

} ;
s t r u c t f l o w _ a t t r i b u t e s
{

c h a r i f a c e _ n a m e [ IFNAMSIZ ] ;
u64 t s t a m p ;
u16 z o n e _ i d ;
boo l i s _ e l e p h a n t _ f l o w ;

} ;

4.2.2 Tracing Conntrack kernel events. The first hook
point in the eBPF program executes whenever a new flow
is added. The hook computes a key for the flow from its 5-
tuple and inserts an entry for it in a BPF map. We only track
flows that are marked by conntrack as ASSURED, meaning
that traffic has been seen in both directions. This conserves
memory by filtering stray traffic.

The second hook point is executed when a packet updates
statistics for a tracked flow. If the byte count and timestamp
for the flow indicate that this flow now qualifies as an elephant,
the hook sets a flag in the entry to that effect and then it
generates an add-flow event with information about the flow
and sends it to the data collector discussed in the next section.

Finally, the third hook point is executed when a flow is
deleted from conntrack. The program looks up this flow in
the map, and if it’s marked as an elephant flow, it sends a
delete-flow event to the data collector.

4.2.3 Overhead. We measured throughput and latency
of iperf and sockperf applications, respectively, with and with-
out running the eBPF program. The penalty of additional pro-
cessing done by eBPF programs was found to be negligible.
To identify an elephant flow, we maintain flow-level addi-
tional attributes in a map of 100,000 entries, which takes up
about 3 MB of memory. Memory overhead could be reduced
by storing the extended flow statistics in conntrack module’s
per-flow extension metadata. Since BPF allows running code
directly in the kernel from user space, this new functionality
can be added with minimal CPU overhead.

4.3 Learning Containerized Workload
Network Footprint

All the containers in a VM share the VM’s virtual network
interface. To learn a containerized workload’s footprint, we
need to attribute a given elephant flow to a particular container.
For this benefit, we used conntrack zone [8], an identifier that
partitions conntrack entries for namespacing and fairness.

3



Linux Plumbers Conference, September 9-11, 2019, Lisbon, PortugalAditi Ghag, Yaniv Ben-Itzhak, Justin Pettit, Ben Pfaff

Each container’s traffic is mapped to a different conntrack
zone. Our eBPF hooks store the conntrack zone id in the
map described earlier. When the eBPF program detects an
elephant flow, it identifies its container using its zone id. The
corresponding workload running inside the container will
then be identified and tagged as one with a heavy network
footprint. This information is fed to a container scheduler
such that when the instances of this workload are later re-
deployed, the tagged network information can be proactively
used by the scheduler, described in §4.4.

4.4 Traffic footprint-aware Container
Scheduling

We run a distributed data collector, written in Python, on ev-
ery hypervisor in its Kubernetes cluster. The collector loads
the eBPF program described in the previous section. It then
listens for add and delete elephant flow events from the BPF
program. The collector also translates the hypervisor’s VM
interface to the VM’s node label in the Kubernetes cluster so
that the Kubernetes scheduler can identify the correct worker
node. It then creates an update message, for every node that
includes the number of elephant flows running in contain-
ers deployed inside the node, and sends it to the scheduler,
as shown in Figure 2. The scheduler will try to schedule
containers running light network footprint workloads away
from worker nodes that are running heavy network footprint
containers.

5 OTHER USER CASES
There can be other potential use cases that can use the net-
work footprint characterizing eBPF based framework.
Resource Allocation: Containers or VMs running workloads
with heavy network footprint can be allocated high bandwidth,
and dynamically assigned to separate receive-side scaling
(RSS) [7] queues.
Hardware offloading: The eBPF framework can be extended
to tag Elephant flows or flows that can benefit from hardware
offloading, depending on what kind of flow processing is be-
ing offloaded to hardware.
Flowlet generation Flowlet switching [18] is a popular idea,
proposed in the past, that divides flows into smaller units for
network load balancing purposes, with limiting reordering.
But studies [17] show that dividing small flows for load bal-
ancing is unnecessary, and need not be exposed to reordering.
Hence, the eBPF framework when identifies Elephant flows
can mark these flows such that flowlet generation logic can
only operate on such long-lived flows.

6 FUTURE WORK
Storing flow attributes Currently, we use a BPF map to store
flow attributes, which can be stored in conntrack extension
metadata.
High scale environments We need to deploy the framework
in high scale environments to further validate the overheads
of the eBPF program.
Explore other use cases It’s worthwhile to explore the other
use cases.
Other network characteristics The current framework can
be extended to characterize other network characteristics of
workloads such as in-cast scenarios, applications dependen-
cies, packet rate, etc.

7 CONCLUSION
We presented a framework that uses BPF to characterize net-
work footprint of application workloads. The enhanced infor-
mation is then used to augment container schedulers in order
to optimize performance of latency sensitive workloads.

8 ACKNOWLEDGEMENTS
The author would like to thank Yi-Hung Wei for discussions,
on Conntrack, Cheng-Chun Tu and Brenden Blanco for help
with debugging eBPF program.

REFERENCES
[1] Apache Mesos. http://mesos.apache.org/.
[2] BPF. https://www.kernel.org/doc/Documentation/networking/filter.txt.
[3] eBPF reference guide. https://github.com/iovisor/bcc/blob/master/docs/

reference_guide.md.
[4] Geneve: Generic Network Virtualization Encapsulation. https://

datatracker.ietf.org/doc/draft-ietf-nvo3-geneve/.
[5] Kubernetes scheduler. https://github.com/eBay/Kubernetes/blob/

master/docs/devel/scheduler_algorithm.md.
[6] Production-Grade Container Orchestration - Kubernetes. https://

kubernetes.io.
[7] Receive Side Scaling (RSS). https://www.kernel.org/doc/

Documentation/networking/scaling.txt.
[8] RFC netfilter conntrack. https://lwn.net/Articles/370152/.
[9] Swarm: a Docker-native clustering system. https://github.com/docker/

swarm.
[10] Virtual eXtensible Local Area Network (VXLAN). https://datatracker.

ietf.org/doc/rfc7348/.
[11] Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiff. Sampling

and large flow detection in sdn. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication, SIGCOMM
’15, 2015.

[12] Y. Ben-Itzhak, C. Caba, L. Schour, and S. Vargaftik. C-share: Opti-
cal circuits sharing for software-defined data-centers. arXiv preprint
arXiv:1609.04521, 2016.

[13] M. Chowdhury and I. Stoica. Coflow: A networking abstraction for
cluster applications. In Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, pages 31–36. ACM, 2012.

[14] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling
with varys. In ACM SIGCOMM Computer Communication Review,
volume 44, pages 443–454. ACM, 2014.

4

http://mesos.apache.org/
 https://www.kernel.org/doc/Documentation/networking/filter.txt
 https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
 https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
 https://datatracker.ietf.org/doc/draft-ietf-nvo3-geneve/
 https://datatracker.ietf.org/doc/draft-ietf-nvo3-geneve/
https://github.com/eBay/Kubernetes/blob/master/docs/devel/scheduler_algorithm.md
https://github.com/eBay/Kubernetes/blob/master/docs/devel/scheduler_algorithm.md
https://kubernetes.io
https://kubernetes.io
 https://www.kernel. org/doc/Documentation/networking/scaling. txt
 https://www.kernel. org/doc/Documentation/networking/scaling. txt
 https://lwn.net/Articles/370152/
https://github.com/docker/swarm
https://github.com/docker/swarm
 https://datatracker.ietf.org/doc/rfc7348/
 https://datatracker.ietf.org/doc/rfc7348/


Traffic Footprint Characterization of Workloads using BPFLinux Plumbers Conference, September 9-11, 2019, Lisbon, Portugal

[15] A. R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection.
In INFOCOM, 2011 Proceedings IEEE, pages 1629–1637. IEEE, 2011.

[16] B. Gregg. Performance superpowers with enhanced BPF. USENIX
ATC, 2017.

[17] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. Presto:
Edge-based load balancing for fast datacenter networks. SIGCOMM
Comput. Commun. Rev., 45(4):465–478, Aug. 2015.

[18] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic load balanc-
ing without packet reordering. SIGCOMM Comput. Commun. Rev.,
37(2):51–62, Mar. 2007.

[19] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted comple-
tion time of coflows in datacenter networks. In Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and Architectures,
pages 294–303. ACM, 2015.

[20] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford. Heavy-hitter detection entirely in the data plane. In Pro-
ceedings of the Symposium on SDN Research, SOSR ’17, 2017.

[21] R. Trestian, G.-M. Muntean, and K. Katrinis. Micetrap: Scalable traffic
engineering of datacenter mice flows using openflow. In Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Sym-
posium on, pages 904–907. IEEE, 2013.

[22] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, and
S. Wang. Rapier: Integrating routing and scheduling for coflow-aware
data center networks. In Computer Communications (INFOCOM),
2015 IEEE Conference on, pages 424–432. IEEE, 2015.

5


	Abstract
	1 Keywords
	2 Introduction
	3 Characterization of Workloads
	3.1 Latency v/s Throughput
	3.2 Characterizing the Network Footprint
	3.3 Detecting and Mapping Elephant Flows in End Hosts

	4 Implementation
	4.1 eBPF
	4.2 Detecting and Mapping Elephant Flows Using eBPF
	4.3 Learning Containerized Workload Network Footprint 
	4.4 Traffic footprint-aware Container Scheduling

	5 Other User Cases
	6 FUTURE WORK
	7 CONCLUSION
	8 ACKNOWLEDGEMENTS
	References

