
AN EVALUATION OF
HOST BANDWIDTH MANAGER

Lawrence Brakmo

Facebook

brakmo@fb.com
Linux Plumbers Conference 2019

What is HBM?

• Host Bandwidth Manager is a BPF based framework for
managing ingress and egress host network bandwidth
• It uses egress and ingress cgroup skb hooks
• Linux already supports allocating and managing many

system resources such as CPU and memory.
• Bandwidth management is harder since it also involves a

remote resources
• This is especially true for ingress bandwidth management

since it is the remote host, the sender, that needs to
change its rate

What is different from previous talk?

• Code changes:
• BPF spinlocks are implemented (instead of a global lock)
• No enter_cwr() helper, instead use return value to indicate

congestion and call tcp_enter_cwr()
• No support for reducing probe timer. Instead there is support for

reading “tpàpackets_out” and BPF program can decide how to
handle case when packets_out < 2

What is different from previous talk? (2)

• Evaluation
• Uses actual patches (instead of experimental code)
• Tests include using multiple cgroups (i.e. multiple bw limits)

• Tests for prevention of incast losses
• Tests include use of fq’s EDT

What other options are there?

• Traffic control (tc) allows shaping of outgoing traffic and
policing of incoming traffic
• htb qdisc is commonly used to support multiple egress

bandwidths
• Issues with qdisc root lock and large htb trees

• BPF (other than egress/ingress cgroup skb hook)
• Google uses TC clsact egress hook and a flat HTB

• One can use fq with EDT here, but some overhead if not done by
the NIC

QUICK OVERVIEW OF HBM

Overview

• Use existing egress and ingress cgroup skb hooks.
• Egress policing/”shaping” is done through
• ECN

• return code to trigger TCP’s congestion window reduction (CWR)
• fq’s Earliest Departure Time (EDT)

• packet drops

• Ingress policing/”shaping” is done through
• ECN
• Packet drops

Overview (2)

• Policy (algorithm) is implemented in BPF program
• Can use TCP state to improve behavior (such as fairness)
• Tp->packets_out: At least 2 to prevent delayed-acks

• Tp->srtt: Improve fairness of short and long RTT flows

BW management

•We use a virtual queue to track bw use (per cgroup)
• Struct vqueue { // in cgroup local storage
• struct bpf_spin_lock lock;
• long long lasttime; /* in ns */
• int credit; /* in bytes */
• unsigned int rate; /* in bytes per NS
• << 20 */ };

•When sending a packet:
• Credit += credit_per_ns(currtime – lasttime, rate); // need to bound
• Credit -= wire_length_in_bytes(skb); // need to account for TSO

•Make decision based on credit and packet info

Current Congestion Algorithm

• If credit < Small pkt drop threshold, all packets are dropped
(except some cases if unless packets_out < 2)
• If credit < Large pkt drop threshold, drop large packets
• If credit < Mark Threshold, then “mark it”
• ECN: mark it
• TCP – non-ECN: return “congestion” with a linear probability. The

closer credit is to Drop Threshold, the more likely to return
“congestion”

Large pkt
drop

Thresh

Small pkt
drop
Thresh

0Mark
Threshold

+-

Credit

Non-ECN TCP MARK FUNCTIONS

0

1

MT DT

- CREDIT

Probability of
returning
“congestion” so
tcp_enter_cwr()
is called

EVALUATION

experiments

• Single cgroup egress
• 1-10KB RPC, 3-1MB RPCs

•Multiple cgroups egress
• 1-10KB RPC, 3-1MB RPCs

• Single cgroup ingress (preventing incast losses)
• 1-10KB RPC, 3-1MB and 3-8MB RPCs

SINGLE CGROUP EGRESS

One cgroup, 1G Limit

0

200

400

600

800

1000

1200

cubic cubic-EDT dctcp dctcp-EDT

Agg Rate 10K rate 1M Rate

T
hr

ou
gh

pu
t

(M
bp

s)

One cgroup, 1G Limit

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

cubic cubic-EDT dctcp dctcp-EDT

% Drops

% Drops

%
 P

ac
ke

t
D

ro
ps

One cgroup, 1G Limit

1

10

100

1000

10000

100000

1000000

cubic cubic-EDT dctcp dctcp-EDT

RPC Latencies

10K P99 1M P99

99
%

 R
PC

 L
at

en
ci

es

One cgroup, 9G Limit

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

cubic cubic-EDT dctcp dctcp-EDT

Throughputs

Agg Rate 10K rate 1M Rate

T
hr

ou
gh

pu
t

(M
bp

s)

One cgroup, 9G Limit

1

10

100

1000

10000

100000

cubic cubic-EDT dctcp dctcp-EDT

RPC Latencies

10K P99 1M P99

99
%

 R
PC

 L
at

en
ci

es

One cgroup, 200M Limit

0

50

100

150

200

250

Cubic Cubic-EDT dctcp dctcp-EDT

Throughputs

Agg Rate 10K rate 1M Rate

T
hr

ou
gt

hp
ut

(M
bp

s)

One cgroup, 200M Limit

0

2000

4000

6000

8000

10000

12000

14000

16000

Cubic Cubic-EDT dctcp dctcp-EDT

10KB RPC 90% Latencies

10K P99

99
%

 R
PC

 L
at

en
ci

es
 (

us
)

One cgroup, 200M Limit

0

100000

200000

300000

400000

500000

600000

Cubic Cubic-EDT dctcp dctcp-EDT

1MB RPC 99% Latency

1M P99

1M
B

R
PC

 9
9%

 L
at

en
cy

 (
us

)

MULTIPLE CGROUP EGRESS

1G and 9G Limits

1G and 9G Limits

1G and 9G Limits

INGRESS

Experimental Setup

Senders

Switch Receiver

Each sender is doing:
1-10KB RCP
1-1MB RPC
1-8MB RPC

Algorithm for preventing incast losses

• Apply limit to root cgroup
•We need to impose a limit below link bandwidth since we

are never going to see it above link bandwidth
• The further down it is, the more space we have to absorb

bursts before the switch buffers start dropping
•When used to protect from incast, no need to drop packets

if we are marking them (let switch drop them)

• In this experiments we are dropping

Ingress 9G Limit

0

200

400

600

800

1000

1200

1400

Baseline Cubic Cubic-ECN DCTCP

Throughput

10K Rate 1M Rate 8M Rate

T
hr

ou
gh

pu
ts

 (
M

bp
s)

Ingress 9G Limit

0

50000

100000

150000

200000

250000

300000

Baseline Cubic Cubic-ECN DCTCP

99% RPC Latency

10K P99 1M P99 8M P99

99
%

 R
PC

 L
at

en
cy

 (
us

)

Ingress 9G Limit

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Baseline Cubic Cubic-ECN DCTCP

10K RPC P99 Latency

10K P99

99
%

 1
0K

 R
PC

 L
at

en
cy

 (
us

)

Ingress 9G Limit

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Baseline Cubic Cubic-ECN DCTCP

Retransmissions

Retransmissions

Conclusions

• Can effectively allocate egress bandwidth per cgroup
• Explored algorithms for egress achieve similar performance,

DCTCP best

• Can also use for ingress limiting per cgroup
• Can be used for reducing losses due to incast traffic
• Improves fairness of small RPC traffic

• 10KB RPC 99% latency reduced by 6x compared to baseline

