' ‘ | muman =

use Host JIT Back-end as
Offload Back-end

u,.-: Jiong Wang
#F Netronome
LPC(, BPF Microconference, September-11, 2019

Agenda | NETRONGME

e \Why do we need this?

e BPF prog to runnable image
Host JIT without BPF2BPF call
Host JIT with BPF2BPF call
Static offload JIT
Dynamic offload JIT

e JIT back-end improvements for better modularity
Enable multiple JIT back-ends at the same time
Code-gen only and PIC code only
Separate compilation and linking

e Prototyping based on SmartNIC with RISC-V inside
Hardware introduction
Software prototyping

© 2019 NETRONOME SYSTEMS, INC. 2

Why do we need this? | NETRONCOME

e BPF could be offloaded
SmartNIC at the moment (Netronome NFP)
Perhaps other devices in the future once device driver on BPF
e And we want to use architectures with strong ecosystem
RISC-V, arm32, AArch64 etc or even BPF itself[1]
There are host JIT back-ends for them already
e Host JIT and offload JIT
No difference on processor, code generation is the same
Difference on runtime environment, linking is different
We want to reuse code generation part of host JIT

[1]: “Programmable Dataplane for Next Generation Networks”, Glasgow University.

© 2019 NETRONOME SYSTEMS, INC. 3

BPF Prog -> Runnable Image

e Arunnable image must have:
All BPF instructions translated
All external references relocated (Maps, branches, calls)
Hence, BPF prog must have the followings resolved during JIT compilation:
m Map addresses (static global data is based on map as well)
m Destinations of local jumps, helper calls, BPF2BPF calls
e Current BPF JIT infrastructure
Resolving them on BPF ISA instead of native ISA
m C ->relocatable BPF .o -> final BPF.o -> final image (Selected)
m C ->relocatable BPF .o -> relocatable native image -> final image (Not)
Two main stages for JIT compilation
m prelinking BPF .0
m JIT back-end code generation

© 2019 NETRONOME SYSTEMS, INC. 4

BPF Prog -> Runnable Image | NETRONGME

e Host JIT - prelinking without BPF2BPF call

Kernel space “loader” 1

r0 += 2 r0 +=2 r0 +=2
r1 = map_obj r1 = map_idx Kernel space verifier r1 = map_addr
jmp: jmp: Jmp:

1
1
1
1
1
1
!
1
alu: Loader : alu: v alu:
i
1
1
1
1
1
1

—

ifr0==4goto-alu |
if r0 == 6 goto +call
call:
call helper_idx \)

User Space Kernel Space

ifrO==4goto-alu |

if r0 == 6 goto +call
call:

call helper_idx

if r0 == 4 goto -alu
if rO == 6 goto +call
call:
pc-rel call helper_addr

e Only PROGBITS (insn/data) are loaded into kernel space e BPF sequence have all external address
e Reloc and symtab sections etc won'’t be loaded finalized before JIT code generation
e Reloc info therefore needs to be re-encoded into insn

© 2019 NETRONOME SYSTEMS, INC. 5

BPF Prog -> Runnable Image | NETRONGME

e Host JIT - prelinking with BPF2BPF call
C -> relocatable BPF .o -> final BPF.o -> native image, this flow has dilemma

“loader” alu: g al%: +=2
(0 += 2 b

r1 = map_addr r1 = map_addr

jmp: jmp:
9 ' if rO == 6 goto +call

if rO == 6 goto +call !

call:
alu: pe-re’ ca helper_adcr pc-rel call prog_off

pc-rel call bpf_off

ro+=2 4 :
1= map_idx Kernel space verifier i |
jmp:

if r0 == 4 goto -alu

if r0 == 6 goto +call
call:

call helper_idx

pc-rel call bpf_off

e Still, BPF sequence has all address finalized
including subprogs before JIT code generation

Kernel Space

© 2019 NETRONOME SYSTEMS, INC. 6

BPF Prog -> Runnable Image | NETRONGME

e Host JIT - code generation
Input: BPF sequence has all address finalized including subprogs before

JIT code generation JIT back-end (bpf_init_jit_compile)

"y ! | alu: alu: :
a L(,I).+_ , i i addiu addiu i
r1 = " : ; lui addr_hi ; lui addr_hi |
jrrr1p'_ map_addr i ! addi addr_lo v addi addr_lo :
np: | jmp: jmp: :
if r0 == 4 goto -alu ! code-gen ' c?np code-gen : Cfnp |
if rO == 6 goto +call . :
call: : pass 1 C:fl:ond 0 pass 2 C;)Iclzond +l-off |
pc-rel call helper_addr | pc-rel call to addr or pc-rel call to addr or :
pc-rel call prog_off : abs indirect call to addr abs indirect call to addr i

i (aarch64 blir etc) (aarch64 blir etc) :

Kernel Space

© 2019 NETRONOME SYSTEMS, INC. 7

BPF Prog -> Runnable Image | NETRONGME

e Summary for host JIT
User and kernel space loaders perform various prelinkings on BPF ISA
m Three “symbol” tables used:
® map_idx -> map_addr
® helper_idx -> helper_addr
e func idx ->func_addr
JIT back-ends interleave with prelinking because of the flow dilemma
Some JIT back-ends generates non-PIC instruction sequence in final image
No relocation information in final image

© 2019 NETRONOME SYSTEMS, INC. 8

BPF Offload - Static Offload | NETRONCGME

Data/Code (maps, prog, libs/helpers) preallocated on devices

Extern addresses for BPF prog still could be known before doing JIT code-gen
Prelinking on BPF ISA then doing code-gen still work

replace_map_fd_ with_map_ptr and fixup_bpf call need tweaks

Offload Device

User space [

N

PROG_LOAD

(8 J
Kernel space
g)

Insn rewriter
N\ J

-

4

JIT back-end

(¥

© 2019 NETRONOME SYSTEMS, INC. 9

BPF Offload - Dynamic Offload | NETRONOGME

e Code could have been allocated dynamically on devices
e If code generation uses PIC sequence, then no difference with static offload
e Otherwise, needs runtime relocation information

Offload Device

)

Loader
User space | / \
"""""""""""""""" y T T TTTTTTTTTTTTTTTTTTTTTTTTTTT map (created on device for
6) MAP_CREATE syscall)
PROG_LOAD
0 J
Kernel space /[lib/helpers (pre-installed on device) }
4)
Insn rewriter ~“Formon-PIC call sequengce,
- d needed but unknown ~----
- /

_ Image ready to
. JIT back-end)4{ run on device]

© 2019 NETRONOME SYSTEMS, INC. 10

BPF Offload - Dynamic Offload, A Real Example | NETRONGME

e For example, NFP doesn’t support pc-relative jump/call, we have the following
dynamic offload implementation:

lu:
arL(J) +=2 map/helper NFP JIT Loader on
r1 = map_idx (actually fd) rewriter back-end SmartNIC

call helper_idx

jmp: alu:
if r0 == 4 goto -alu add r0, r0, 2 R_ABS_HELPER 0x1 [o
if 0 == 6 goto +call Skip BPF prelinking mov r1, internal_idx R_ABS_EXIT ox2 Runtime linking
call: call helper_idx R REL 0x3
call helper_idx jmp: N -
> Map index and helper index are kept as symbol cmp r0, 4 0001...
index for runtime relocation done by loader on goto -al
SmartNIC
= No hardware pc-relative jump, so all jumps needs b _exit
R_REL to adjust the jump destination according 0011
to load base
> A few special relocation, for example exit point
> Relocation value is not splitted into sequence
-> NFP insn is 64-bit, but a few top bits are

reserved, so relocation types are kept there!

© 2019 NETRONOME SYSTEMS, INC. 11

BPF Offload - Summary | NETRONGME

e The current host JIT back-ends could perhaps be used as offload JIT back-ends
directly with very little changes, because:
Native data (maps) and code are created separately. We always know data
addresses before generating code
The generated code themselves could be PIC (Position Independent Code)
Offload JIT may need to generate extra runtime code
m return from main returns to other device firmware exit
m error handling code
m device could expose these addresses to offload JIT
e If not
The offloaded image needs to encode the relocation information, perhaps
the offload image needs an extra header

© 2019 NETRONOME SYSTEMS, INC. 12

JIT Back-end Improvements | NETRONGME

e Enable multiple JIT back-ends at the same time
x86_64/AArch64 + offload device 1(Arm) + offload device 2(RISC-V) ... etc.
could be the usual architecture combination
We need multiple JIT back-ends enabled, not only the $(ARCH)
m JIT back-end normally is a single file, could be built independently
e Solution
Split bpf_int_jit_compile into bpf_int_jit compile + ARCH_bpf int _jit compile
bpf/core.c defines a set of weak ARCH_bpf int_jit_compile for all
Extra interface to query what's the offload arch

© 2019 NETRONOME SYSTEMS, INC. 13

JIT Back-end Improvements | NETRONOGME

e Enable multiple JIT back-ends at the same time - no offload

bpf_int_jit compile() ((_weak_)) o\ Host arch. interface overrid _e_S_pr_jit_interface.c: \
bpt_jit needs_zext() (__weak)) bpf_int_jit_compile(){

the weak interface x86_64 bpf_int_jit_compile();

bpf_int_jit compile_all[] = }

{
x86_64 bpf int_jit_compile, bpf_jit_backend.c
riscv_bpf_int_jit_compile, x86_64_bpf_int_jit_compile() {

the implementation...
} NG arch/x86/net//

bpf_jit needs_zext_all(enum jit_arch)

case X86_64:
return fal_se; /bpfjit__intfarface.c_: \
case RISCV: bp_f_lnt _jlt_gom9|le(){ .
return true: riscv_bpf_int_jit_compile();
case ... }
} ,
x86_64_bpf_int_jit_compile () ((__weak__)) bpf_jit_backend.c _
riscv_bpf_int_jit_compile () ((__weak__)) riscv_bpf_int_jit_compile() {
the implementation...
kernel/bpf/core.c k} arch/riscv/nety

© 2019 NETRONOME SYSTEMS, INC. 14

JIT Back-end Improvements | NETRONOGME

e Enable multiple JIT back-ends at the same time - with offload

bpf_int_jit_compile() ((_weak__)~ =-------XN--____ e . /bpf_jit_interface.c: \
bpt_jit_needs_zext() (__weak__)) Host arch-interface overrides __ | _ bpf_int_jit_compile(){
the weak interface x86_64_bpf_int_jit_compile();
bpf_int_jit_compile_all[] = }
{
x86_64 bpf int_jit_compile, bpf_jit_backend.c
riscv_bpf_int_jit_compile, x86_64_bpf_int_jit_compile() {
e the implemgrig{Rta6/net/
' kernellbpfiMakefile: . U -/
obj-$(CONFIG_BPF_JIT_BACKEND_RISCV) = $(objtree)/../../arch/$(SRCARCH/net/bpf_jit_backend.c
bpf_jit_needs_zext_all(enum jit_arch \\\
{p_J - ~zext_all e) R /bpf_jit_interface.c: \
case X86 64: Tl bpf_int_jit_compile(){
return fal_se; T riscv_bpf_int_jit_compile();
case RISCV: RN
return true; .
case ... bpf_jit_backend.c
} riscv_bpf_int_jit_compile() {

x86_64_bpf_int_jit_compile () ((__weak__)) the implementation...
{sm/bpfint_jitcompile 0 (_weak_)) / U archiriscv/net/ /
kernel/bpf/core.

© 2019 NETRONOME SYSTEMS, INC. 15

JIT Back-end Improvements | NETRONOGME

e Cleaner code generation
Back-end generates PIC code as much as possible when range fits
Back-end does code-gen only, no runtime stuff (icache flush)
Split compilation and linking?
m bpf int jit compile()
m bpt_int_jit_link(bpf prog, |dx2Addr map, Idx2Addr helper, Ildx2Addr subprog)
e More relocs compared with BPF ISA. Arches could split reloc value into sequence for
loading large imm. mov r0, addr_0_16, movsh r0, addr_16_32, movsh r0,
addr_32 48, movsh r0, addr_48 64
e Architecture has their own relocation description, for example
R_AARCH64_MOVW_*, R_RISCV_HI_* etc.
e Prois no need of back-end dry run inside verifier
e Con is more back-ends related work.

© 2019 NETRONOME SYSTEMS, INC. 16

Offload Infrastructure Improvements | NETRONGME

e Offload JIT is bypassing a couple of paths of host JIT
o Designed for NFP offload
o Could be overkilling for generic RISC processors offload
o For example, we could still want prelinking on BPF ISA
e Current offload infrastructure was more or less designed for net devices, may
could be simplified for other offload scenarios.

© 2019 NETRONOME SYSTEMS, INC. 17

Hardware and Software Prototyping

| NETRONOGME

e Netronome RFPC (RISC-V Flow Processing Core)

Config
Island

SRAM
Memory
Island

SRAM
Memory
Island

RFPC
Island

(=100 Cores)
\ J

RFPC
Island

(=100 Cores)
\ J

RFPC
Island

(=100 Cores)
\ J

RFPC
Island

(=100 Cores)
. J

RFPC
Island

(=100 Cores)
\

RFPC
Island

(=100 Cores)
\

\

SRAM
Memory
Island

RFPC
Island

(=100 Cores)
\ J \

SRAM
Memory
Island

Host
Memory

Host

J
Expansion
Island

© 2019 NETRONOME SYSTEMS, INC.

The chip or chiplet is made up
of islands, which are connected
through the instruction-driven
switch fabric

Which allows for implement-
tation from small to large
Memory hierarchy provides
equal access to all types of
memories

The config, host interface, and
network interface islands allow
for feeding data into the system
Basic flow of data in a
SmartNIC

Hardware and Software Prototyping | NETRONGME

e Netronome RFPC - continues

Global Bus
< Island Bus
> Remote-Cache Coherency Ops
=

Tile Link
to Island Bus
Agent

Datapath: Posted

Coprocessor and
Memory Transactions

e RFPC Cluster Ul G s T
’ (Many RFPC Cores)
{ REPC Cluster } Tile Link {

(Many RFPC Cores Slice Cache

RFPC Cluster Tile Link Slice Cacha
) (Many RFPC Cores)

© 2019 NETRONOME SYSTEMS, INC.

Hardware and Software Prototyping

e RFPC (RISC-V Flow Processing Core) features:
RFPC cores are RV32IMC cores with custom-0/1 instructions
m RV32IMC keeps the performance high with low silicon gate count
m Support for user, machine and debug modes only, but provides some memory
protection and both user-level and machine-level interrupts
m Custom-0 instructions permit dynamic binding of 48+-bit host address and bulk
DDR addresses to 32-bit RISC-V addresses
m Custom-1 instructions permit transaction memory and signaling operations
RFPC Cores collected into RFPC groups
m Sharing local memory, which is directly accessed (not cache)
m Simple address translation permits core-local data and stack without
changing code and register initialization values
RFPC Groups collected into RFPC Clusters
RFPC Clusters collected together

© 2019 NETRONOME SYSTEMS, INC. 20

Hardware and Software Prototyping

e Software prototyping - basic environment rough description
net
x86 host === remote FPGA board

Standard C program Arm Controller

gdb-remote-stub

Y

RFPC cores on FPGA

RISC-V ELF .o

riscv-elf-gdb/run

© 2019 NETRONOME SYSTEMS, INC. 21

Hardware and Software Prototyping | NETRONGME

e Software prototyping - BPF offload, crazy ideas
remote FPGA board

x86 host
redirect map_cr:eate
bpf.o ~ libbpf 5 gdb-remote-stub
kt gen ".
\F;erh? inject code bin
RFPC co\:lP small map".,for testing
offloaded |
bpf code i RFPC data
raw insn bin ~ loadable bin |
convertor
code
, polling
B : kernel space ; event

© 2019 NETRONOME SYSTEMS, INC. 22

Thank You

