
© 2019 NETRONOME SYSTEMS, INC.

Jiong Wang
Netronome

LPC BPF Microconference, September-11, 2019

Reuse Host JIT Back-end as
Offload Back-end

© 2019 NETRONOME SYSTEMS, INC. 2

Agenda

● Why do we need this?
● BPF prog to runnable image

○ Host JIT without BPF2BPF call
○ Host JIT with BPF2BPF call
○ Static offload JIT
○ Dynamic offload JIT

● JIT back-end improvements for better modularity
○ Enable multiple JIT back-ends at the same time
○ Code-gen only and PIC code only
○ Separate compilation and linking

● Prototyping based on SmartNIC with RISC-V inside
○ Hardware introduction
○ Software prototyping

© 2019 NETRONOME SYSTEMS, INC. 3

Why do we need this?

● BPF could be offloaded
○ SmartNIC at the moment (Netronome NFP)
○ Perhaps other devices in the future once device driver on BPF

● And we want to use architectures with strong ecosystem
○ RISC-V, arm32, AArch64 etc or even BPF itself[1]
○ There are host JIT back-ends for them already

● Host JIT and offload JIT
○ No difference on processor, code generation is the same
○ Difference on runtime environment, linking is different
○ We want to reuse code generation part of host JIT

[1]: “Programmable Dataplane for Next Generation Networks”, Glasgow University.

© 2019 NETRONOME SYSTEMS, INC. 4

BPF Prog -> Runnable Image

● A runnable image must have:
○ All BPF instructions translated
○ All external references relocated (Maps, branches, calls)
○ Hence, BPF prog must have the followings resolved during JIT compilation:

■ Map addresses (static global data is based on map as well)
■ Destinations of local jumps, helper calls, BPF2BPF calls

● Current BPF JIT infrastructure
○ Resolving them on BPF ISA instead of native ISA

■ C -> relocatable BPF .o -> final BPF.o -> final image (Selected)
■ C -> relocatable BPF .o -> relocatable native image -> final image (Not)

○ Two main stages for JIT compilation
■ prelinking BPF .o
■ JIT back-end code generation

© 2019 NETRONOME SYSTEMS, INC. 5

BPF Prog -> Runnable Image

● Host JIT - prelinking without BPF2BPF call

alu:
 r0 += 2
 r1 = map_obj
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 call helper_idx

Loader alu:
 r0 += 2
 r1 = map_idx
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 call helper_idx

● Only PROGBITS (insn/data) are loaded into kernel space
● Reloc and symtab sections etc won’t be loaded
● Reloc info therefore needs to be re-encoded into insn

User Space Kernel Space

Kernel space “loader”

Kernel space verifier

Helper functions

map/
helper_call

rewriter

map
create/rew

rite

alu:
 r0 += 2
 r1 = map_addr
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 pc-rel call helper_addr

maps

● BPF sequence have all external address
finalized before JIT code generation

© 2019 NETRONOME SYSTEMS, INC. 6

BPF Prog -> Runnable Image

● Host JIT - prelinking with BPF2BPF call
○ C -> relocatable BPF .o -> final BPF.o -> native image, this flow has dilemma

alu:
 r0 += 2
 r1 = map_idx
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 call helper_idx
 pc-rel call bpf_off

Kernel Space

“loader”

Kernel space verifier

Helper functions

map/helper_call
rewriter

alu:
 r0 += 2
 r1 = map_addr
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 pc-rel call helper_addr
 pc-rel call bpf_off

maps

compilation
dry run

JIT back-end

bpf2bpf call rewriter

subprog
addresses

alu:
 r0 += 2
 r1 = map_addr
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 pc-rel call helper_addr
 pc-rel call prog_off

● Still, BPF sequence has all address finalized
including subprogs before JIT code generation

© 2019 NETRONOME SYSTEMS, INC. 7

BPF Prog -> Runnable Image

● Host JIT - code generation
○ Input: BPF sequence has all address finalized including subprogs before

JIT code generation

Kernel Space

alu:
 r0 += 2
 r1 = map_addr
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 pc-rel call helper_addr
 pc-rel call prog_off

JIT back-end (bpf_init_jit_compile)

alu:
 addiu
 lui addr_hi
 addi addr_lo
jmp:
 cmp
 bcond 0
call:
 pc-rel call to addr or
 abs indirect call to addr
 (aarch64 blr etc)

alu:
 addiu
 lui addr_hi
 addi addr_lo
jmp:
 cmp
 bcond +/-off
call:
 pc-rel call to addr or
 abs indirect call to addr
 (aarch64 blr etc)

code-gen
pass 1

code-gen
pass 2

offset table

© 2019 NETRONOME SYSTEMS, INC. 8

BPF Prog -> Runnable Image

● Summary for host JIT
○ User and kernel space loaders perform various prelinkings on BPF ISA

■ Three “symbol” tables used:
● map_idx -> map_addr
● helper_idx -> helper_addr
● func_idx -> func_addr

○ JIT back-ends interleave with prelinking because of the flow dilemma
○ Some JIT back-ends generates non-PIC instruction sequence in final image
○ No relocation information in final image

© 2019 NETRONOME SYSTEMS, INC. 9

BPF Offload - Static Offload

● Data/Code (maps, prog, libs/helpers) preallocated on devices
● Extern addresses for BPF prog still could be known before doing JIT code-gen
● Prelinking on BPF ISA then doing code-gen still work
● replace_map_fd_with_map_ptr and fixup_bpf_call need tweaks

 map (created on device for
MAP_CREATE syscall)

code (preallocated
from fixed address)

 lib/helpers (pre-installed on device)

Loader

PROG_LOAD

JIT back-end

Insn rewriter

User space

Kernel space

Image ready to
run on device

Offload Device

© 2019 NETRONOME SYSTEMS, INC. 10

BPF Offload - Dynamic Offload

● Code could have been allocated dynamically on devices
● If code generation uses PIC sequence, then no difference with static offload
● Otherwise, needs runtime relocation information

 map (created on device for
MAP_CREATE syscall)

code (allocated by loader from
random address)

 lib/helpers (pre-installed on device)

Loader

PROG_LOAD

JIT back-end

Insn rewriter

User space

Kernel space

Image ready to
run on device

Offload Device

For non-PIC call sequence,
 needed but unknown

© 2019 NETRONOME SYSTEMS, INC. 11

BPF Offload - Dynamic Offload, A Real Example

● For example, NFP doesn’t support pc-relative jump/call, we have the following
dynamic offload implementation:

alu:
 r0 += 2
 r1 = map_idx (actually fd)
 call helper_idx
jmp:
 if r0 == 4 goto -alu
 if r0 == 6 goto +call
call:
 call helper_idx

alu:
 add r0, r0, 2
 mov r1, internal_idx
 call helper_idx
jmp:
 …
 cmp r0, 4
 goto -alu
 ...
 b _exit

map/helper
rewriter

NFP JIT
back-end

0001...

R_ABS_HELPER 0x1
R_ABS_EXIT 0x2
R_REL 0x3

0011...

Loader on
SmartNIC

Skip BPF prelinking

➔ Map index and helper index are kept as symbol
index for runtime relocation done by loader on
SmartNIC

➔ No hardware pc-relative jump, so all jumps needs
R_REL to adjust the jump destination according
to load base

➔ A few special relocation, for example exit point
➔ Relocation value is not splitted into sequence
➔ NFP insn is 64-bit, but a few top bits are

reserved, so relocation types are kept there!

Runtime linking

© 2019 NETRONOME SYSTEMS, INC. 12

BPF Offload - Summary

● The current host JIT back-ends could perhaps be used as offload JIT back-ends
directly with very little changes, because:

○ Native data (maps) and code are created separately. We always know data
addresses before generating code

○ The generated code themselves could be PIC (Position Independent Code)
○ Offload JIT may need to generate extra runtime code

■ return from main returns to other device firmware exit
■ error handling code
■ device could expose these addresses to offload JIT

● If not
○ The offloaded image needs to encode the relocation information, perhaps

the offload image needs an extra header

© 2019 NETRONOME SYSTEMS, INC. 13

JIT Back-end Improvements

● Enable multiple JIT back-ends at the same time
○ x86_64/AArch64 + offload device 1(Arm) + offload device 2(RISC-V) ... etc.

could be the usual architecture combination
○ We need multiple JIT back-ends enabled, not only the $(ARCH)

■ JIT back-end normally is a single file, could be built independently
● Solution

○ Split bpf_int_jit_compile into bpf_int_jit_compile + ARCH_bpf_int_jit_compile
○ bpf/core.c defines a set of weak ARCH_bpf_int_jit_compile for all
○ Extra interface to query what’s the offload arch

© 2019 NETRONOME SYSTEMS, INC. 14

JIT Back-end Improvements

● Enable multiple JIT back-ends at the same time - no offload

bpf_int_jit_compile() ((__weak__))
bpt_jit_needs_zext() (__weak__))

bpf_int_jit_compile_all[] =
{
 x86_64_bpf_int_jit_compile,
 riscv_bpf_int_jit_compile,
 ...
}

bpf_jit_needs_zext_all(enum jit_arch)
{
 case X86_64:
 return false;
 case RISCV:
 return true;
 case ...
}
x86_64_bpf_int_jit_compile () ((__weak__))
riscv_bpf_int_jit_compile () ((__weak__))
...

bpf_jit_interface.c:
 bpf_int_jit_compile(){
 x86_64_bpf_int_jit_compile();
 }

bpf_jit_backend.c
 x86_64_bpf_int_jit_compile() {
 the implementation...
 }

bpf_jit_interface.c:
 bpf_int_jit_compile(){
 riscv_bpf_int_jit_compile();
 }

bpf_jit_backend.c
 riscv_bpf_int_jit_compile() {
 the implementation...
 }

Host arch interface overrides
the weak interface

arch/x86/net/

kernel/bpf/core.c arch/riscv/net/

© 2019 NETRONOME SYSTEMS, INC. 15

JIT Back-end Improvements

● Enable multiple JIT back-ends at the same time - with offload

bpf_int_jit_compile() ((__weak__))
bpt_jit_needs_zext() (__weak__))

bpf_int_jit_compile_all[] =
{
 x86_64_bpf_int_jit_compile,
 riscv_bpf_int_jit_compile,
 ...
}

bpf_jit_needs_zext_all(enum jit_arch)
{
 case X86_64:
 return false;
 case RISCV:
 return true;
 case ...
}
x86_64_bpf_int_jit_compile () ((__weak__))
riscv_bpf_int_jit_compile () ((__weak__))
...

bpf_jit_interface.c:
 bpf_int_jit_compile(){
 x86_64_bpf_int_jit_compile();
 }

bpf_jit_backend.c
 x86_64_bpf_int_jit_compile() {
 the implementation...
 }

bpf_jit_interface.c:
 bpf_int_jit_compile(){
 riscv_bpf_int_jit_compile();
 }

bpf_jit_backend.c
 riscv_bpf_int_jit_compile() {
 the implementation...
 }

Host arch interface overrides
the weak interface

arch/x86/net/

kernel/bpf/core.c
arch/riscv/net/

kernel/bpf/Makefile:
obj-$(CONFIG_BPF_JIT_BACKEND_RISCV) = $(objtree)/../../arch/$(SRCARCH/net/bpf_jit_backend.c

© 2019 NETRONOME SYSTEMS, INC. 16

JIT Back-end Improvements

● Cleaner code generation
○ Back-end generates PIC code as much as possible when range fits
○ Back-end does code-gen only, no runtime stuff (icache flush)
○ Split compilation and linking?

■ bpf_int_jit_compile()
■ bpt_int_jit_link(bpf_prog, Idx2Addr map, Idx2Addr helper, Idx2Addr subprog)

● More relocs compared with BPF ISA. Arches could split reloc value into sequence for
loading large imm. mov r0, addr_0_16, movsh r0, addr_16_32, movsh r0,
addr_32_48, movsh r0, addr_48_64

● Architecture has their own relocation description, for example
R_AARCH64_MOVW_*, R_RISCV_HI_* etc.

● Pro is no need of back-end dry run inside verifier
● Con is more back-ends related work.

© 2019 NETRONOME SYSTEMS, INC. 17

Offload Infrastructure Improvements

● Offload JIT is bypassing a couple of paths of host JIT
○ Designed for NFP offload
○ Could be overkilling for generic RISC processors offload
○ For example, we could still want prelinking on BPF ISA

● Current offload infrastructure was more or less designed for net devices, may
could be simplified for other offload scenarios.

© 2019 NETRONOME SYSTEMS, INC. 18

Hardware and Software Prototyping

● Netronome RFPC (RISC-V Flow Processing Core)

© 2019 NETRONOME SYSTEMS, INC. 19

Hardware and Software Prototyping

● Netronome RFPC - continues

© 2019 NETRONOME SYSTEMS, INC. 20

Hardware and Software Prototyping

● RFPC (RISC-V Flow Processing Core) features:
○ RFPC cores are RV32IMC cores with custom-0/1 instructions

■ RV32IMC keeps the performance high with low silicon gate count
■ Support for user, machine and debug modes only, but provides some memory

protection and both user-level and machine-level interrupts
■ Custom-0 instructions permit dynamic binding of 48+-bit host address and bulk

DDR addresses to 32-bit RISC-V addresses
■ Custom-1 instructions permit transaction memory and signaling operations

○ RFPC Cores collected into RFPC groups
■ Sharing local memory, which is directly accessed (not cache)
■ Simple address translation permits core-local data and stack without

changing code and register initialization values
○ RFPC Groups collected into RFPC Clusters
○ RFPC Clusters collected together

© 2019 NETRONOME SYSTEMS, INC. 21

Hardware and Software Prototyping

● Software prototyping - basic environment rough description

Arm Controller

 gdb-remote-stub

RFPC cores on FPGA

Standard C program

RISC-V ELF .o

riscv-elf-gdb/run

x86 host remote FPGA board
net

© 2019 NETRONOME SYSTEMS, INC. 22

Hardware and Software Prototyping

● Software prototyping - BPF offload, crazy ideas

RFPC code

bpf.o

x86 host
remote FPGA board

dummy netdev driver
bpf verif/JIT core

loadable bin

bpf_prog

raw insn bin
RFPC data

libbpf
redirect map_create

small map for testing
bpftool

convertor

pkt gen
verif

gdb-remote-stub

inject code bin

code
polling
event

offloaded
bpf code

: kernel space

© 2019 NETRONOME SYSTEMS, INC.

Thank You

