Multipath TCP Upstreaming

Mat Martineau (Intel) and Matthieu Baerts (Tessares)

Plan

e Multipath TCP Overview

e First Patch Set Upstreaming Roadmap
e Advanced Features Roadmap

e Conclusion and links

What is MPTCP?

Multipath TCP (MPTCP)

e Exchange data for a single connection over different paths, simultaneously

e RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group

5@
e

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain 4

Multipath TCP (MPTCP)

e Exchange data for a single connection over different paths, simultaneously

e RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group

e More bandwidth:
O < ﬁ >
"~

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain 5

Multipath TCP (MPTCP)

e Exchange data for a single connection over different paths, simultaneously
e RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group

e More mobility (walk-out):
ﬁ

.
.
.
0
.
.
.
.
.
.
0
0
0
.
.
.
.

““ €
‘="
o
<

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain

o\

Multipath TCP (MPTCP)

e Exchange data for a single connection over different paths, simultaneously

e RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group

More mobility (walk-out):
=y
_- A \\\
\\
\\
~

P\A/
g

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP)

e Exchange data for a single connection over different paths, simultaneously
e RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group

e More mobility (walk-out):

B
T 2

.
.
L.
.
.
- .
L.
. :
.
. # .
» “
.
.
N m .

-

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain 8

Multipath TCP (MPTCP)

e Exchange data for a single connection over different paths, simultaneously
e RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group

e More mobility (walk-out):

/@\@
&3

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain 9

Multipath TCP Use Cases

e Smartphones (Apple, Samsung, LG, others)

o Support failover / “walk-out” scenario.

o More Bandwidth

e Residential Gateways (LTE + DSL, for example)

o More Bandwidth

e Multipath TCP is part of 5G standardisation:

o Access Traffic Steering, Switching and Splitting: ATSSS

10

Multipath TCP Use Cases: ATSSS

- best network
OR WiFi .
SG selection
and vice seamless improved
FROM TO -
5G WiF versa handover end user
experience
network
AND .
5G WiFi aggregation
Defined in 3GPP Release 16, ATSSS is a core network function in 5G networks, x@
playing a key role in managing data traffic between 3GPP (5G, 4G) networks and non-3GPP (Wi-Fi) networks ¢

Existing Linux implementation

e First implementation for Linux kernel in March 2009

o Latest MPTCP out-of-tree Linux kernel version is v0.95
o Generally used as a client / server in current deployments, for millions of users
e But not upstreamable

o Built to support experiments and rapid changes but not generic enough

o Special purpose implementation of MPTCP

12

Guidelines for upstream

e New implementation cannot affect existing TCP stack:

o Without performance regressions. No code size change if CONFIG_MPTCP=n
o Maintainable and configurable

o Can be used in a variety of deployments

e Multipath TCP will be "opt-in"

e Proceed in steps:

o Minimal features set

o Optimisations and advanced features for later

13

Protocol Overview: RFC 6824

Looks like TCP on the wire, similar usage for apps

l

MPTCP

||

14

Protocol Overview: RFC 6824

e |ooks like TCP on the wire, similar usage for apps e

e Subflow mapping: Data Sequence Number

. @ Dseq=2, seq=456,“C”

Dseq=3, seq=456,"D”
Dseq=1, seq=124,"B”

O B m_,Dseq=0, seq=123,A”

Dseq=4, seq=125,"E”

15

Smartphone icon by Blurred203 under CC-by-sa, others from Tango project, public domain

Protocol Overview: RFC 6824

e Looks like TCP on the wire, similar usage for apps

e Subflow mapping: Data Sequence Number

16

Protocol Overview: RFC 6824

e Looks like TCP on the wire, similar usage for apps

e Subflow mapping: Data Sequence Number

17

Protocol Overview: RFC 6824

e Looks like TCP on the wire, similar usage for apps

e Subflow mapping: Data Sequence Number

U A

IP Layer

18

Protocol Overview: RFC 6824

e Looks like TCP on the wire, similar usage for apps

e Subflow mapping: Data Sequence Number + ACK

U A

IP Layer

19

Protocol Overview: RFC 6824

e |ooks like TCP on the wire, similar usage for apps e

e Subflow mapping: Data Sequence Number + ACK

In TCP
options

e MP_CAPABLE, MP_JOIN, DATA_FIN

U A

IP Layer

20

Protocol Overview: RFC 6824

e |ooks like TCP on the wire, similar usage for apps e

e Subflow mapping: Data Sequence Number + ACK

Via
TCP ACK

e MP_CAPABLE, MP_JOIN, DATA_FIN

e Signaling: Add/Remove Addresses, Fast Close TR (. 5

IP Layer

21

Protocol Overview: RFC 6824

e |ooks like TCP on the wire, similar usage for apps e
e Subflow mapping: Data Sequence Number + ACK

e MP_CAPABLE, MP_JOIN, DATA_FIN

e Signaling: Add/Remove Addresses, Fast Close TR (. 5

IP Layer

e Coupled receive windows across TCP subflows

22

Multiple versions of MPTCP

e RFC 6824: Experimental

o All known implementations support it, only this version

e RFC 6824 bis: Standard

o Submitted to IESG for publication
o Behavioral changes: MPTCP vO = MPTCP v1
o Some parts easier to implement

o Selected by 3GPP for 5G

23

First Patch Set Roadmap

MPTCP Socket architecture

IP Proto: struct proto

TCP ULP: struct tcp_ulp_ops
We start from: tcp_request_sock_ops

SKB extension: struct mptcp_ext
To store Data Sequence Signal (25 bytes)

25

Userspace API

e MPTCP selected when creating the socket:

socket (AF_INET(6), SOCK_STREAM, IPPROTO_MPTCP);

26

Userspace API

e MPTCP selected when creating the socket:

socket (AF_INET(6), SOCK_STREAM, IPPROTO_MPTCP);

o IPPROTO_MPTCP = IPPROTO_TCP | ©x160; /* = 262 */

27

Userspace API

e MPTCP selected when creating the socket:

socket (AF_INET = , , IPPROTO_MPTCP) ;

o IPPROTO_MPTCP = IPPROTO_TCP | ©x100; /* = 262 */

e getsockopt() /setsockopt() with MPTCP socket or its TCP subflows?

28

Userspace API

e MPTCP selected when creating the socket:

socket (AF_INET = , , IPPROTO_MPTCP) ;

o IPPROTO_MPTCP = IPPROTO_TCP | ©x100; /* = 262 */

e getsockopt() /setsockopt() with MPTCP socket or its TCP subflows?

e Security: who can create MPTCP sockets?

o Initial implementation will not be hardened by broad use yet (syzkaller, etc.)

o sysctl per network namespace, MPTCP disabled by default: is it enough?

29

Diagnostics
e MPTCP will have a collection of counters for diagnostic and debug purposes

e Per-socket data will be shared with userspace via sock_diag(7)

o TCP ULP framework has been extended to enable diag

e Some TCP counters are also found in /proc

o Should MPTCP add to these as well?

30

Tests

e Kernel Self Tests

o Between multiple namespaces (veth)

o MPTCP & MPTCP, MPTCP & TCP, TCP < MPTCP

o Various conditions including packet loss, reordering, and variations in routing
e Packetdrill

o Background project ongoing to add MPTCP support

o Out-of-tree Packetdrill with MPTCP support but old and limited

31

Initial use case

e Serverroleis a good place to start

e Simpler path management
o Client side handles multiple interfaces (like cellular + Wi-Fi)
e Common server configuration uses one public
interface for clients

o Advertising additional interfaces not required

e C(lient features all build on what’s needed for servers

NAT

NAT

IP2

IP3

Client

32

Code already merged upstream

e SKB extensions

o Needed to carry MPTCP options that are tied to the data payload
o Also used to remove sp (sec_path) and nf_bridge pointers from struct sk_buff

o Suitable for data that can’t fit in sk_buff and justifies memory overhead

e Add inet_diag_ulp_info to socket diag format and ULP get_info hook

33

Change in TCP Code

Git Stat:

include/linux/skbuff.h
include/linux/tcp.h
include/net/sock.h
include/net/tcp.h
include/trace/events/sock.h

—_
—_

++
++++H+HH+
+_

++++

+_

a1
ity

include/uapi/linux/in.h +
net/Kconfig +
net/Makefile +

|
|
|
|
|
|
|
|
net/ax25/af_ax25.c | +-
net/core/skbuff.c |
net/decnet/af_decnet.c |
net/ipv4/inet_connection_sock.c |
net/ipv4/tcp.c |
net/ipv4/tcp_input.c |
net/ipv4/tcp_ipvé.c |
net/ipv4/tcp_minisocks.c |
net/ipv4/tcp_output.c |
net/ipv4/tcp_ulp.c |

e
+++

— O N N
NNODMOONNNN=_2=_2NOOO
-+

Changes to TCP code

e tcp_ulp_clone()

e Export two low-level TCP functions and one struct

e SKBs with MPTCP extensions can’t be coalesced or collapsed
e MPTCP option parsing and writing

e 1is_mptcp flagin tcp_sock and tcp_request_sock

35

Changes to TCP code, continued
e One MPTCP-specific branch in TCP minisocks
e Call outto MPTCP from tcp_data_queue to add SKB extension and process

ACKs
e Additional membersin struct tcp_options_received

e Subflow receive window sharing will introduce changes too

36

Advanced Features Roadmap

Path Manager

Which path to create/remove? Which address to announce?

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
v
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
“ ’

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
H .
.
.
.
.
.
.
.
.
.
.
.

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain 38

Userspace Path Manager

Peers share ADD_ADDR and REMOVE_ADDR signals to advertise available
addresses for each MPTCP connection

Path manager runs in userspace and uses generic netlink to track address and
local interface updates and request subflow changes

Can be customized with different policies.

Multipath TCP Daemon alpha release is available at github.com/intel/mptcpd

39

https://github.com/intel/mptcpd

Packet Scheduler

On which available path packets will be sent? Reinject packets in another path?

.
?
- A

~
A

A —
>

Smartphone and WiFi icons by Blurred203 and Antii Plasma under CC-by-sa, others from Tango project, public domain 40

Packet scheduling

e Different connections may optimize for throughput, latency, or redundancy.
e Peers can set a ‘backup’ flag on each subflow to limit transmission on that flow
e Include basic scheduler options in the kernel

e Consider eBPF to define custom schedulers, instead of kernel modules

41

Using MPTCP with unmodified binaries

e Some organizations want to take advantage of MPTCP without recompiling

their userspace
e Can add BPF_CGROUP_SOCKET to attach an eBPF program that rewrites the
protocol number passed to socket()

e Similar attachment points exist for bind() and connect()

42

MPTCP Performance optimizations

Initial emphasis is on correctness and reasonable MPTCP performance
o While not disrupting TCP’s optimizations!

Target performance optimizations based on data

Protocol optimizations

o Example: changing scheduler behavior for reinjection of data on different subflows

TCP Fast Open support

43

Break-before-make

e MPTCP can keep a connection active even with zero subflows connected

o Allows the session to continue by adding a subflow with MP_JOIN

e Can be useful to switch between access points

e Will add this capability if there’s demand for it

44

Subflow socket options

e One MPTCP socket manages a set of in-kernel subflow sockets

e Socket options that use TCP option space or change data flow could interfere
e The MPTCP socket can act as an intermediary for subflow options

e Will need to whitelist specific known-safe options

e Could expose file descriptors only good for getsockopt()/setsockopt)

45

Kernel TLS and MPTCP

e KTLS is built on top of TCP using ULP framework
e An MPTCP socket is not a TCP socket, so it doesn’t have ULP

e TLS needs to operate on the MPTCP data stream, not subflow streams

o TLS records could be split across subflows
o MPTCP DSS mappings are specific to TCP sequence numbers
e TLS_SW appears feasible but would need work to integrate with an MPTCP

socket type

46

Conclusion

47

Conclusion

e Build around TCP as much as we can.
e We are close to having an initial patch set ready.

This project is open to everybody.

Wiki: https://is.gd/mptcp upstream

Mailing list: https://lists.01.org/mailman/listinfo/mptcp

Git repository: https://github.com/multipath-tcp/mptcp_net-next
Paper: https://linuxplumbersconf.org/event/4/contributions/435/
mathew.j.martineau@linux.intel.com
matthieu.baerts@tessares.net

48
D

https://github.com/multipath-tcp/mptcp_net-next/wiki
https://lists.01.org/mailman/listinfo/mptcp
https://github.com/multipath-tcp/mptcp_net-next
https://linuxplumbersconf.org/event/4/contributions/435/
mailto:mathew.j.martineau@linux.intel.com
mailto:matthieu.baerts@tessares.net

Backup slides

Protocol challenges

Relations between structures

Application Layer

........ | socket

MPTCP-layer

tep_sock

e i mptep_tep._sock subflow-layer

Network Layer

Used with Christoph Paasch’s permission 50

KTLS record

Record 1 Record 2 KTLS
|\\\\\V/ [\
TLS Record 1 |TLS Record 2
L \ 1 ’ 1 \ | ’ \ / 1
\ / N1 TCP
sh_info sh_info
o t t
Write
queue SKB 1 SKB 2 \

Get TLS rec«%nj\ — T / arier

https://netdevconf.org/1.2/papers/netdevconf-TLS.pdf

Protocol challenges

Coupled receive windows across TCP subflows

Host A
Addrs:

Al A

Timeout

Host B Buf spacel = 100
Buf_space2 = 100

Addrs:
2 B.1

subseq=1, data_seq=1

subseq=[1,100], data_seq=[2,101]

’ Avail_buf 2 =0

I
subseq=1, data_seq=1
4

Deadlock

Separate receive windows

Avail_buf_1 = 100

Host A
Addrs:

Al A

Timeout

Host B Buf space = 200

Addrs:
2 B.1

subseq=1, data_seq=1

subseq=[1,199], data_seq=[2,200]

e

rcv_window = [1,201[.
i
subseq=1, data_seq=1
___su_bseq=200, data_seq=1
____________ o

Shared receive window

Used with Sébastien Barré’s permission

Avail_buf = 200

Avail_buf = 1

<reordering>

<app delivery>
Avail_buf = 200

52

Multipath TCP (MPTCP)

Hybrid access network use-case (BBF TR-348 by Tessares - SwissCom - OVH)

Age nt ______
capacity |

multi-
platform

/

" |
IL; — 4G/LTE cloud

!’E% network native

needed, for 4G/LTE
I connectivity

TCA

network

= — N .
DSL CPE I copper (long line) fiber : Telco Cloud ;

Images from Tessares

|

Hi

Hi Dﬂ) > 1| sl
—

53

Protocol challenges

54

Protocol challenges

Data sequence numbers and mappings

Smartphone icon by Blurred203 under CC-by-sa, others from Tango project, public domain 55

Protocol challenges

Data sequence numbers and mappings

Smartphone icon by Blurred203 under CC-by-sa, others from Tango project, public domain 56

Protocol challenges

Data sequence numbers and mappings

Smartphone icon by Blurred203 under CC-by-sa, others from Tango project, public domain 57

Protocol challenges

Data sequence numbers and mappings

Dseq=3, seq=456,“D”

o

/' Dseq=2, seq=456,“C”

C

Dseq=5, seq=126,“F”

Dseq=0, seq=123,A”

Dseq=4, seq=125,"FE”

Smartphone icon by Blurred203 under CC-by-sa, others from Tango project, public domain

58

Protocol challenges

Data sequence numbers and mappings

App sends data Socket Layer :
.......................... ﬂi.”””””””.““““
mptcp_sock
tcp_sock
"""" PLayer

59

Protocol challenges

Data sequence numbers and mappings

Socket Layer

o Soke T

Select the TCP subflow mptcp_sock

v

tcp_sock

Protocol challenges

Data sequence numbers and mappings

Socket Layer

o Soke T

mptcp_sock

TCP header: What DSS to set? (

tcp_sock

61

Protocol challenges

Sending of ACKs to signal options, e.g. REMOVE_ADDR in a TCP ACK

mptcp_sock

tcp_sock SO

Subflow ops flo S

Notification: one iface is down

62

Protocol challenges

Sending of ACKs to signal options, e.g. REMOVE_ADDR in a TCP ACK

Select the subflow mptcp_sock

v

tcp_sock SO

Subflow ops flo S

Protocol challenges

Sending of ACKs to signal options, e.g. REMOVE_ADDR in a TCP ACK

Sending a ACK not from TCP stack mptcp_sock

v

tcp_sock SO

Subflow ops flo S

Protocol challenges

Reception of ACKs with signaling options, e.g. REMOVE_ADDR in a TCP ACK

mptcp_sock

tcp_sock tcp_sock

Subflow ops Subflow ops

TCP ACK received IP Layer

Protocol challenges

Reception of ACKs with signaling options, e.g. REMOVE_ADDR in a TCP ACK

mptcp_sock

A

TCP ACK is not dropped tep_sock tep_sock

Subflow ops Subflow ops

Protocol challenges

Reception of ACKs with signaling options, e.g. REMOVE_ADDR in a TCP ACK

mptcp_sock

A

tcp_sock SO

Subflow ops flo S

67

Protocol challenges

Signaling with MPTCP:

MP_CAPABLE
MP_JOIN

DSEQ / DACK
FAST_CLOSE
ADD_ADDR
REMOVE_ADDR

SYN
SYN
ALL
ACK followed by RST
ACK
ACK

68

