
!1

September 2019

David Ahern | Cumulus Networks

Improving Route Scalability: 
Nexthops as Separate Objects

Cumulus Networks !2

Agenda

Executive Summary
▪ If you remember nothing else about this talk …

Driving use case

Review legacy route API

Dive into Nexthop API

Benefits of the new API

Cumulus Networks !3

Performance with the Legacy Route API

route

prefix/len
dev

gateway

route

prefix/len
dev

gateway

route

prefix/len
dev

gateway

route

prefix/len
dev

gateway

Cumulus Networks !4

Splitting Next Hops from Routes

nexthop
dev

gateway

nexthop
group

nexthop[N]

route
prefix/len
nexthop id

route
prefix/len

nexthop id
nexthop

dev
gateway

nexthop
dev

gateway

Legacy Route API

Routes with separate Nexthop objects

route

prefix/len
dev

gateway

route

prefix/len
dev

gateway

route

prefix/len
dev

gateway

route

prefix/len
dev

gateway

Cumulus Networks !5

Dramatically Improves Route Scalability …

Cumulus Networks !6

… with the Potential for Constant Insert Times

Cumulus Networks !7

FIB

us
er

sp
ac

e
ke

rn
el

Networking Operating System Using Linux APIs

Routing daemon or utility manages
entries in kernel FIBs via rtnetlink APIs
▪ Enables other control plane software

to use Linux networking APIs
Data path connections, stats,
troubleshooting, …

Management of hardware offload is
separate
▪ Keeps hardware in sync with kernel

Userspace driver with SDK leveraging
kernel notifications

NIC

driver

eth0 swp1 swp2 swpN
...

switch ASIC

driver

H
 /

W

SDK

switchd

FIB

rtnetlink

upper devices tunnels

driver

FRR

notifications

ip

Cumulus Networks !8

FIB

us
er

sp
ac

e
ke

rn
el

NOS with switchdev Driver

NIC

driver

eth0 swp1 swp2 swpN
...

switch ASIC

driver

H
 /

W

FIB

rtnetlink

upper devices tunnels

notifications

In-kernel switchdev driver

Leverages in-kernel notifications to
keep hardware in sync

Minus the hardware offload and this
is the same architecture for RoH

FRRip

Cumulus Networks !9

FIB

us
er

sp
ac

e
ke

rn
el

Alternative NOS with SDK Based ASIC Driver

NIC

driver

eth0 swp1 swp2 swpN
...

switch ASIC

driver

H
 /

W

SDK

asicd

FIB

rtnetlink

upper devices tunnels

driver

routing FIB
No reliance on kernel notifiers

Kernel is treated like hardware
▪ Another entity to “program” based

on its networking model

Key points
▪ Limited number of front panel ports
▪ Large route capacity in ASIC
▪ Forwarding data is pushed to kernel
▪ Scalability for the future

!10

Next hops for Routes are Repetitive

Network path typically has many networks behind it

Result is prefixes out number unique nexthops by large factor
▪ Depending on route scale of a node, it could be 100k’s of routes with

10’s to 100’s of unique paths (nexthops and nexthop groups)

Redundant information in the forwarding configuration

Cumulus Networks !11

Routing Suites

Nexthop information typically
separate from prefixes
▪ Varies by daemon (bgp, ospf, etc)

Update Message (2), length: 470
 Origin (1), length: 1, Flags [T]: EGP
 0x0000: 01
 AS Path (2), length: 38, Flags [T]: 65534 …
 …
 Next Hop (3), length: 4, Flags [T]: 10.203.253.254
 0x0000: 0acb fdfe
 Community (8), length: 4, Flags [OT]: 64596:20
 0x0000: fc54 0014
 Updated routes:
 10.118.182.0/20
 10.158.166.0/20
 10.158.150.0/20
 10.158.134.0/20
 10.158.108.0/20
 10.158.102.0/20
 <more prefixes>

prefix / len
prefix / len

prefix / len
prefix / len

gateway

bgpd bgpd

Cumulus Networks !12

Pushing Routes to the Kernel

Netlink message per prefix to add route to kernel FIB
▪ RTM_NEWROUTE, RTM_DELROUTE

Each route expected to contain nexthop data
▪ RTA_OIF, RTA_GATEWAY, …

Example using iproute2:
▪ ip route add <prefix> via [<gw>] dev <device>
▪ ip route add <prefix> nexthop via [<gw>] dev <device> …

prefix / len
prefix / len

prefix / len
prefix / len

gateway
dev+ =

kernel route

prefix/len
dev

gateway

Cumulus Networks !13

Kernel Handling

Data in each route message needs to be validated
▪ Gateway lookup based on current FIB data
▪ Verify egress device matches lookup

Nexthop specs are integrated into route structs
▪ ipv4: fib_nh at the end of fib_info, fib entries point to fib_info
▪ ipv6: fib6_nh in a fib6_info (after refactoring in early 2018)
▪ mpls: mpls_nh at the end of mpls_route

Notifiers in turn pass integrated data in notifier
▪ userspace notifications and in-kernel notifiers

Cumulus Networks !14

ASIC Programming

Map kernel model to asic resources
▪ Route egress netdevice = RIF on front panel port
▪ Gateway resolved to neighbor entry
▪ Add host route for gateway pointing to RIF
▪ Nexthop entry created pointing to RIF and host route
▪ Nexthop group created for multipath routes

LPM entry references nexthop or nexthop group

LPM entry
prefix / len

nexthop
group

nexthop RIF port

host
route

Cumulus Networks !15

Notifier Handling - Kernel or Userspace Driver

Separate prefix / length from nexthop data

Find unique nexthop / nexthop group entry in hardware
▪ Lookup to see if entry already exists
▪ Create logically in s/w and allocate in backend RIF created for Layer 3

routing
▪ Reference to port and VRF

prefix / len gateway
dev+

kernel route

prefix/len
dev

gateway

Cumulus Networks !16

End to End – Lot of Wasted Cycles

Redundant processing adding routes
▪ Lookups to validate gateway addresses
▪ Validating lwtunnel state (e.g., MPLS encapsulation)
▪ Comparison of nexthop specs
▪ Memory allocations (e.g., pcpu for route caches)

All of it affects convergence time following a link event
▪ critical benchmark for a NOS

Relevant as scaling goes into the millions of routes

Cumulus Networks !17

Nexthops as Standalone Objects

Nexthops as separate object
▪ Separate add/create/modify

lifecycle from route entries
▪ Validation is done once

Nexthop group references
one or more ‘basic’ nexthops
▪ Multipath routes

FIB entries reference nexthop
by id

Simple idea; huge
implications

prefix

nh
prefix

prefix
prefix dev

prefix

nh group
prefix

prefix
prefix

devnh

devnh

Cumulus Networks !18

Nexthop API

New objects with own commands and lifecycle

RTM_{NEW,DEL,GET}NEXTHOP with NHA_ attributes
▪ Attributes and header struct defined in include/uapi/linux/nexthop.h
▪ NHA_ attributes are direct parallels to RTA_ versions

Two kinds of nexthop objects: ‘basic’ nexthop or group
▪ Id for both can be specified (NHA_ID) or assigned by kernel
▪ Id (NHA_ID or nexthop->id) is unique; ASIC drivers can leverage the id to manage

cache

Basic nexthop
▪ Device (NHA_OIF) + gateway (NHA_GATEWAY) OR blackhole

(NHA_BLACKHOLE)
▪ Requires address family to be set

Cumulus Networks !19

Nexthop API, cont’d

Nexthop groups reference one or more basic nexthops
▪ References existing nexthop by id and weight
▪ Address family is AF_UNSPEC
▪ Group can reference any ‘basic’ nexthops (groups with mix of address

family supported)

Nexthop objects can be updated
▪ RTM_NEWNEXTHOP with NLM_F_REPLACE

Cumulus Networks !20

Constraints on Nexthops

Multipath groups can not be a nexthop within a group
▪ No nested groups

Blackhole in a group – only 1 nexthop allowed in group

Same nexthop id can not be in a group more than once
▪ Limitation in how the kernel tracks nexthop references

Updates can not change nexthop ‘type’ for the id
▪ Basic can not become a group and vice versa

Cumulus Networks !21

Routes with Nexthop Objects

Add routes referencing nexthop (or nexthop group) by id
▪ RTA_NH_ID attribute for routes
▪ RTA_NH_ID means RTA_OIF, RTA_GATEWAY, RTA_ENCAP can not be

given

Minimal kernel checks on route add
▪ Nexthop id is valid
▪ Nexthop type is valid for route

IPv4: scope check
IPv6: route can not reference v4 nexthop

Cumulus Networks !22

Co-existence of Models

If you like your current route model, you can keep it – really
▪ Backwards compatibility for legacy software

Userspace (e.g., routing daemons) opts in to new API

Route notifications expand nexthop
▪ New RTA_NH_ID attribute plus nexthop (RTA_OIF, RTA_GATEWAY)

Cumulus Networks !23

Userspace Notifications

Usual notifications for add / delete / update of nexthop object

Intent is to minimize userspace notifications
▪ No notifications for link events
▪ Carrier down, admin down or device delete

Nexthop object removed
Routes referencing it are removed
Userspace expected to respond to link event

Backwards compatibility for legacy apps
▪ Route notifications have nexthop id and expansion of nexthop data
▪ Updates to nexthop generate notifications for linked routes

Cumulus Networks !24

Nexthop Kernel Code

Code is in net/ipv4/nexthop.c, include/net/nexthop.h
▪ Expectation is future extensions / features with nexthop code does not

require any changes to core IPv4 and IPv6

Nexthops stored in per network namespace rbtree
▪ Index is nexthop id

Leverages core code as much as possible
▪ One of the objectives of all the refactoring: move to fib_nh_common,

exporting init and release for fib{6}_nh management, etc

Cumulus Networks !25

Nexthop Kernel Code

struct nexthop
▪ lists for tracking which FIB entries reference nexthop
▪ list for tracking which groups reference nexthop
▪ hash table tracking netdevice to nexthop objects

All of it is intended to be able to quickly correlate an event to a nexthop
or vice versa

Cumulus Networks !26

Kernel Data Structures

fib_info {
 …
 nexthop *nh
 fib_nh[0]
}

nexthop
{ group

 }

nexthop {
 fib{6}_nh
}

fib6_info {
 …
 nexthop *nh
 fib6_nh[0]
} nexthop {

 fib6_nh
}

nexthop {
fib_nh
}

nexthop {
 fib{6}_nh
}

nexthop {
fib_nh
}

nexthop {
 fib6_nh
}

nexthop
{ group

 }

Cumulus Networks !27

Nexthop Integration into IPv6

Code iterates over fib6_info

IPv6 multipath routes implemented as series of linked fib6_info
▪ Different from IPv4 where fib_info references an array of fib_nh (paths)

fib6_info {
 …
 fib6_next
 fib6_siblings
 fib6_nh
}

fib6_info {
 …
 fib6_next
 fib6_siblings
 fib6_nh
}

fib6_info {
 …
 fib6_next
 fib6_siblings
 fib6_nh
}

fib6_info {
 …
 fib6_next
 fib6_siblings
 fib6_nh
}

Cumulus Networks !28

Nexthop Integration into IPv6

With nexthop objects, IPv6 multipath routes effectively become:

Code refactored to take fib6_nh

Updated to iterate over fib6_nh within a fib6_info

IPv6 does not quite align with IPv4 due to legacy implementation, but it is closer

fib6_info {
 …
 fib6_next
 nexthop
}

nexthop {
 …
 nexthop[N]
}

nexthop {
 …
 fib6_nh
}

fib6_info {
 …
 fib6_next
 nexthop
 fib6_nh[0]
}

nexthop {
 …
 fib6_nh
}

nexthop {
 …
 fib6_nh
}

nexthop {
 …
 fib6_nh
}

Cumulus Networks !29

Example Using iproute2

Basic nexthops
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2

Cumulus Networks !30

Example Using iproute2

Basic nexthops
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2

Blackhole nexthop
▪ ip nexthop add id 3 blackhole

Cumulus Networks !31

Example Using iproute2

Basic nexthops
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2

Blackhole nexthop
▪ ip nexthop add id 3 blackhole

Multipath nexthop
▪ ip nexthop add id 101 group 1/2

Cumulus Networks !32

Example Using iproute2

Basic nexthops
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2

Blackhole nexthop
▪ ip nexthop add id 3 blackhole

Multipath nexthop
▪ ip nexthop add id 101 group 1/2

Route referencing nexthop object
▪ ip route add 192.168.1.0/24 nhid 101

Cumulus Networks !33

Old to New API

Route vs nexthop
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via

172.16.2.1 dev eth2

Route vs nexthop
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop

via 172.16.2.1 dev eth2

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1

Cumulus Networks !34

Old to New API

Cumulus Networks !35

Old to New API

Route vs nexthop
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via

172.16.2.1 dev eth2

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1
▪ ip nexthop add id 2 via 172.16.2.1 dev eth2

Cumulus Networks !36

Old to New API

Route vs nexthop
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via

172.16.2.1 dev eth2

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1
▪ ip nexthop add id 2 via 172.16.2.1 dev eth2
▪ ip nexthop add id 101 group 1/2

Cumulus Networks !37

Old to New API

Route vs nexthop
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via

172.16.2.1 dev eth2

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1
▪ ip nexthop add id 2 via 172.16.2.1 dev eth2
▪ ip nexthop add id 101 group 1/2
▪ ip route add 192.168.1.0/24 nhid 101

Cumulus Networks !38

Benefits

Removes redundant processing on route add
▪ Already validated the nexthop gateway, device and LWT config

Opportunity to have better alignment across protocols
▪ Bring fib_info type efficiencies to IPv6 and MPLS

Better memory utilization
No duplicate nexthop checking

Alignment with hardware offload
▪ Reduced burden on asic driver to map Linux objects to ASIC

Cumulus Networks !39

Route Insertion Comparison

Cumulus Networks !40

Flame Graph: IPv4 Legacy API

Cumulus Networks !41

Flame Graph: IPv4 Nexthop API

Cumulus Networks !42

Flame Graph: IPv6 Legacy API

Cumulus Networks !43

Flame Graph: IPv6 Nexthop API

Cumulus Networks !44

Faster Route Updates after Link Event

Legacy API routes have to be deleted/inserted or replaced one
at a time
▪ N routes == N updates

Nexthop object can be updated without touching route entries
▪ Device, gateway, encap updated atomically
▪ Instantly updates all routes using nexthop
▪ 1 message to update N routes

Cumulus Networks !45

RFC 5549

One objective of nexthop feature was to enable IPv4 routes with IPv6
nexthops
▪ Simplest implementation for BGP unnumbered

Objective of refactoring to use fib_nh_common

RTA_VIA instead of RTA_GATEWAY
▪ ‘struct rtvia’ for the data; rtvia has address family followed by address
▪ this applies to IPv6 nexthop object with IPv4 route as well
▪ example: ip route add <prefix/len> nexthop via inet6 <gw> dev <device>

Cumulus Networks !46

Backup nexthop - aka, Fast Re-Routing

Backup nexthops
▪ Routing will use preferred nexthop if

available
▪ per lookup atomic failover to backup

nh
1

prefix

gw,
device

nh
2

gw,
device

nh
1

prefix

device

nh
N

device

nh
201

nh
1

gw,
device

nh
N

gw,
device

nh
101

nh
102

multipath
group

active-backup
group

active nexthop
with backup

active nexthop
with backup

Cumulus Networks !47

Status

Kernel version 5.2
▪ start of the refactoring for properly integrating nexthop objects
▪ IPv6 gateways with IPv4 routes (a.k.a., RFC 5549)

Kernel version 5.3
▪ remaining refactoring
▪ nexthop API

FRR
▪ initial support is in final testing – upstream soon
▪ initial support focused on correctness; room to improve
▪ 30% memory reduction

Cumulus Networks !48

What’s Next

Send patch for sysctl to opt out of backwards compatibility overhead
▪ Do not expand nexthop in route notifications

Userspace relies on RTA_NH_ID
Enables truly constant route management times

▪ Do not send route notifications on nexthop updates
Nexthop notification should suffice for userspace

Add support for nexthop objects to MPLS code

Fast Re-Routing
▪ Someone with the time and interest should be able to add support for this

fairly quickly

Thank you!
Visit us at cumulusnetworks.com or follow us @cumulusnetworks

© 2018 Cumulus Networks. Cumulus Networks, the Cumulus Networks Logo, and Cumulus Linux are trademarks or registered trademarks of Cumulus Networks,
Inc. or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners. The registered trademark Linux® is used pursuant to

a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

Cumulus Networks !49

