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Agenda

Executive Summary 
▪ If you remember nothing else about this talk … 

Driving use case 

Review legacy route API 

Dive into Nexthop API 

Benefits of the new API
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Performance with the Legacy Route API
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Splitting Next Hops from Routes

nexthop 
dev 

gateway

nexthop 
group 

nexthop[N]

route 
prefix/len 
nexthop id 

route 
prefix/len 

nexthop id 
nexthop 

dev 
gateway

nexthop 
dev 

gateway

Legacy Route API

Routes with separate Nexthop objects
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Dramatically Improves Route Scalability …
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… with the Potential for Constant Insert Times
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Networking Operating System Using Linux APIs

Routing daemon or utility manages 
entries in kernel FIBs via rtnetlink APIs 
▪ Enables other control plane software 

to use Linux networking APIs 
Data path connections, stats, 
troubleshooting, … 

Management of hardware offload is 
separate 
▪ Keeps hardware in sync with kernel  

Userspace driver with SDK leveraging 
kernel notifications
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NOS with switchdev Driver
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In-kernel switchdev driver 

Leverages in-kernel notifications to 
keep hardware in sync 

Minus the hardware offload and this 
is the same architecture for RoH 

FRRip
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Alternative NOS with SDK Based ASIC Driver
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No reliance on kernel notifiers 

Kernel is treated like hardware 
▪ Another entity to “program” based 

on its networking model 

Key points 
▪ Limited number of front panel ports 
▪ Large route capacity in ASIC 
▪ Forwarding data is pushed to kernel 
▪ Scalability for the future
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Next hops for Routes are Repetitive

Network path typically has many networks behind it 

Result is prefixes out number unique nexthops by large factor 
▪ Depending on route scale of a node, it could be 100k’s of routes with 

10’s to 100’s of unique paths (nexthops and nexthop groups) 

Redundant information in the forwarding configuration
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Routing Suites

Nexthop information typically 
separate from prefixes 
▪ Varies by daemon (bgp, ospf, etc)

Update Message (2), length: 470 
      Origin (1), length: 1, Flags [T]: EGP 
        0x0000:  01 
      AS Path (2), length: 38, Flags [T]: 65534 … 
             … 
      Next Hop (3), length: 4, Flags [T]: 10.203.253.254 
        0x0000:  0acb fdfe 
      Community (8), length: 4, Flags [OT]: 64596:20 
        0x0000:  fc54 0014 
      Updated routes: 
        10.118.182.0/20 
        10.158.166.0/20 
        10.158.150.0/20 
        10.158.134.0/20 
        10.158.108.0/20 
        10.158.102.0/20 
        <more prefixes>

prefix / len
prefix / len

prefix / len
prefix / len

gateway

bgpd bgpd
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Pushing Routes to the Kernel

Netlink message per prefix to add route to kernel FIB 
▪ RTM_NEWROUTE, RTM_DELROUTE 

Each route expected to contain nexthop data 
▪ RTA_OIF, RTA_GATEWAY, … 

Example using iproute2: 
▪ ip route add <prefix> via [<gw>] dev  <device> 
▪ ip route add <prefix> nexthop via [<gw>] dev  <device> …

prefix / len
prefix / len

prefix / len
prefix / len

gateway 
dev+ =

kernel route 

prefix/len 
dev 

gateway
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Kernel Handling

Data in each route message needs to be validated 
▪ Gateway lookup based on current FIB data 
▪ Verify egress device matches lookup 

Nexthop specs are integrated into route structs 
▪ ipv4: fib_nh at the end of fib_info, fib entries point to fib_info 
▪ ipv6: fib6_nh in a fib6_info (after refactoring in early 2018) 
▪ mpls: mpls_nh at the end of mpls_route 

Notifiers in turn pass integrated data in notifier 
▪ userspace notifications and in-kernel notifiers
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ASIC Programming

Map kernel model to asic resources 
▪ Route egress netdevice = RIF on front panel port 
▪ Gateway resolved to neighbor entry  
▪ Add host route for gateway pointing to RIF 
▪ Nexthop entry created pointing to RIF and host route 
▪ Nexthop group created for multipath routes 

LPM entry references nexthop or nexthop group

LPM entry 
prefix / len

nexthop 
group

nexthop RIF port

host 
route
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Notifier Handling - Kernel or Userspace Driver

Separate prefix / length from nexthop data 

Find unique nexthop / nexthop group entry in hardware 
▪ Lookup to see if entry already exists 
▪ Create logically in s/w and allocate in backend RIF created for Layer 3 

routing 
▪ Reference to port and VRF

prefix / len gateway 
dev+

kernel route 

prefix/len 
dev 

gateway
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End to End – Lot of Wasted Cycles

Redundant processing adding routes 
▪ Lookups to validate gateway addresses 
▪ Validating lwtunnel state (e.g., MPLS encapsulation) 
▪ Comparison of nexthop specs 
▪ Memory allocations (e.g., pcpu for route caches) 

All of it affects convergence time following a link event 
▪ critical benchmark for a NOS 

Relevant as scaling goes into the millions of routes



Cumulus Networks !17

Nexthops as Standalone Objects

Nexthops as separate object 
▪ Separate add/create/modify 

lifecycle from route entries 
▪ Validation is done once 

Nexthop group references 
one or more ‘basic’ nexthops 
▪ Multipath routes 

FIB entries reference nexthop 
by id 

Simple idea; huge 
implications
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Nexthop API

New objects with own commands and lifecycle 

RTM_{NEW,DEL,GET}NEXTHOP with NHA_ attributes 
▪ Attributes and header struct defined in include/uapi/linux/nexthop.h 
▪ NHA_ attributes are direct parallels to RTA_ versions 

Two kinds of nexthop objects: ‘basic’ nexthop or group 
▪ Id for both can be specified (NHA_ID) or assigned by kernel 
▪ Id (NHA_ID or nexthop->id) is unique; ASIC drivers can leverage the id to manage 

cache 

Basic nexthop 
▪ Device (NHA_OIF) + gateway (NHA_GATEWAY) OR blackhole 

(NHA_BLACKHOLE) 
▪ Requires address family to be set
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Nexthop API, cont’d

Nexthop groups reference one or more basic nexthops 
▪ References existing nexthop by id and weight 
▪ Address family is AF_UNSPEC 
▪ Group can reference any ‘basic’ nexthops (groups with mix of address 

family supported) 

Nexthop objects can be updated  
▪ RTM_NEWNEXTHOP with NLM_F_REPLACE
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Constraints on Nexthops

Multipath groups can not be a nexthop within a group 
▪ No nested groups 

Blackhole in a group – only 1 nexthop allowed in group 

Same nexthop id can not be in a group more than once 
▪ Limitation in how the kernel tracks nexthop references 

Updates can not change nexthop ‘type’ for the id 
▪ Basic can not become a group and vice versa
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Routes with Nexthop Objects

Add routes referencing nexthop (or nexthop group) by id 
▪ RTA_NH_ID attribute for routes 
▪ RTA_NH_ID means RTA_OIF, RTA_GATEWAY, RTA_ENCAP can not be 

given 

Minimal kernel checks on route add 
▪ Nexthop id is valid 
▪ Nexthop type is valid for route 

IPv4: scope check 
IPv6: route can not reference v4 nexthop
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Co-existence of Models

If you like your current route model, you can keep it – really 
▪ Backwards compatibility for legacy software 

Userspace (e.g., routing daemons) opts in to new API 

Route notifications expand nexthop 
▪ New RTA_NH_ID attribute plus nexthop (RTA_OIF, RTA_GATEWAY)
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Userspace Notifications

Usual notifications for add / delete / update of nexthop object 

Intent is to minimize userspace notifications 
▪ No notifications for link events 
▪ Carrier down, admin down or device delete 

Nexthop object removed 
Routes referencing it are removed 
Userspace expected to respond to link event 

Backwards compatibility for legacy apps 
▪ Route notifications have nexthop id and expansion of nexthop data 
▪ Updates to nexthop generate notifications for linked routes
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Nexthop Kernel Code

Code is in net/ipv4/nexthop.c, include/net/nexthop.h 
▪ Expectation is future extensions / features with nexthop code does not 

require any changes to core IPv4 and IPv6  

Nexthops stored in per network namespace rbtree 
▪ Index is nexthop id 

Leverages core code as much as possible 
▪ One of the objectives of all the refactoring: move to fib_nh_common, 

exporting init and release for fib{6}_nh management, etc
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Nexthop Kernel Code

struct nexthop 
▪ lists for tracking which FIB entries reference nexthop 
▪ list for tracking which groups reference nexthop 
▪ hash table tracking netdevice to nexthop objects 

All of it is intended to be able to quickly correlate an event to a nexthop 
or vice versa
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Kernel Data Structures

fib_info { 
    … 
    nexthop *nh 
    fib_nh[0] 
}

nexthop 
{ group 

   }

nexthop { 
    fib{6}_nh 
}

fib6_info { 
     … 
    nexthop *nh 
    fib6_nh[0] 
} nexthop { 

    fib6_nh 
}

nexthop { 
fib_nh 
}

nexthop { 
    fib{6}_nh 
}

nexthop { 
fib_nh 
}

nexthop { 
    fib6_nh 
}

nexthop 
{ group 

   }
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Nexthop Integration into IPv6

Code iterates over fib6_info  

IPv6 multipath routes implemented as series of linked fib6_info 
▪ Different from IPv4 where fib_info references an array of fib_nh (paths)

fib6_info { 
     … 
    fib6_next 
    fib6_siblings 
    fib6_nh 
}

fib6_info { 
     … 
    fib6_next 
    fib6_siblings 
    fib6_nh 
}

fib6_info { 
     … 
    fib6_next 
    fib6_siblings 
    fib6_nh 
}

fib6_info { 
     … 
    fib6_next 
    fib6_siblings 
    fib6_nh 
}
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Nexthop Integration into IPv6

With nexthop objects, IPv6 multipath routes effectively become: 

Code refactored to take fib6_nh 

Updated to iterate over fib6_nh within a fib6_info 

IPv6 does not quite align with IPv4 due to legacy implementation, but it is closer

fib6_info { 
     … 
    fib6_next 
    nexthop 
}

nexthop { 
     … 
    nexthop[N] 
}

nexthop { 
     … 
    fib6_nh 
}

fib6_info { 
     … 
    fib6_next 
    nexthop 
    fib6_nh[0] 
}

nexthop { 
     … 
    fib6_nh 
}

nexthop { 
     … 
    fib6_nh 
}

nexthop { 
     … 
    fib6_nh 
}
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Example Using iproute2

Basic nexthops 
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1 
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2
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Example Using iproute2

Basic nexthops 
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1 
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2 

Blackhole nexthop 
▪ ip nexthop add id 3 blackhole
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Example Using iproute2

Basic nexthops 
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1 
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2 

Blackhole nexthop 
▪ ip nexthop add id 3 blackhole 

Multipath nexthop 
▪ ip nexthop add id 101 group 1/2
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Example Using iproute2

Basic nexthops 
▪ ip nexthop add id 1 via 172.16.1.1 dev eth1 
▪ ip nexthop add id 2 via 2001:db8::1 dev eth2 

Blackhole nexthop 
▪ ip nexthop add id 3 blackhole 

Multipath nexthop 
▪ ip nexthop add id 101 group 1/2 

Route referencing nexthop object 
▪ ip route add 192.168.1.0/24 nhid 101
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Old to New API

Route vs nexthop 
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via 

172.16.2.1 dev eth2 



Route vs nexthop 
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop 

via 172.16.2.1 dev eth2  

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1 

Cumulus Networks !34

Old to New API
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Old to New API

Route vs nexthop 
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via 

172.16.2.1 dev eth2  

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1  
▪ ip nexthop add id 2 via 172.16.2.1 dev eth2
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Old to New API

Route vs nexthop 
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via 

172.16.2.1 dev eth2  

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1  
▪ ip nexthop add id 2 via 172.16.2.1 dev eth2 
▪ ip nexthop add id 101 group 1/2
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Old to New API

Route vs nexthop 
▪ ip route add 192.168.1.0/24 nexthop via 172.16.1.1 dev eth1 nexthop via 

172.16.2.1 dev eth2  

▪ ip nexthop add id 1 via 172.16.1.1 dev eth1  
▪ ip nexthop add id 2 via 172.16.2.1 dev eth2 
▪ ip nexthop add id 101 group 1/2 
▪ ip route add 192.168.1.0/24 nhid 101
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Benefits

Removes redundant processing on route add 
▪ Already validated the nexthop gateway, device and LWT config 

Opportunity to have better alignment across protocols 
▪ Bring fib_info type efficiencies to IPv6 and MPLS 

Better memory utilization 
No duplicate nexthop checking 

Alignment with hardware offload 
▪ Reduced burden on asic driver to map Linux objects to ASIC
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Route Insertion Comparison
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Flame Graph: IPv4 Legacy API
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Flame Graph: IPv4 Nexthop API
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Flame Graph: IPv6 Legacy API
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Flame Graph: IPv6 Nexthop API
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Faster Route Updates after Link Event

Legacy API routes have to be deleted/inserted or replaced one 
at a time 
▪ N routes == N updates 

Nexthop object can be updated without touching route entries 
▪ Device, gateway, encap updated atomically 
▪ Instantly updates all routes using nexthop 
▪ 1 message to update N routes
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RFC 5549

One objective of nexthop feature was to enable IPv4 routes with IPv6 
nexthops 
▪ Simplest implementation for BGP unnumbered 

Objective of refactoring to use fib_nh_common 

RTA_VIA instead of RTA_GATEWAY 
▪ ‘struct rtvia’ for the data; rtvia has address family followed by address 
▪ this applies to IPv6 nexthop object with IPv4 route as well 
▪ example: ip route add <prefix/len> nexthop via inet6 <gw> dev <device>
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Backup nexthop - aka, Fast Re-Routing

Backup nexthops 
▪ Routing will use preferred nexthop if 

available 
▪ per lookup atomic failover to backup

nh 
1

prefix

gw, 
device

nh 
2

gw, 
device

nh 
1

prefix

device

nh 
N

device

nh 
201

nh 
1

gw, 
device

nh 
N

gw, 
device

nh 
101

nh 
102

multipath 
group

active-backup 
group

active nexthop 
with backup

active nexthop 
with backup
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Status

Kernel version 5.2 
▪ start of the refactoring for properly integrating nexthop objects 
▪ IPv6 gateways with IPv4 routes (a.k.a., RFC 5549) 

Kernel version 5.3 
▪ remaining refactoring 
▪ nexthop API 

FRR 
▪ initial support is in final testing – upstream soon 
▪ initial support focused on correctness; room to improve 
▪ 30% memory reduction
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What’s Next

Send patch for sysctl to opt out of backwards compatibility overhead 
▪ Do not expand nexthop in route notifications 

Userspace relies on RTA_NH_ID 
Enables truly constant route management times 

▪ Do not send route notifications on nexthop updates 
Nexthop notification should suffice for userspace 

Add support for nexthop objects to MPLS code 

Fast Re-Routing 
▪ Someone with the time and interest should be able to add support for this 

fairly quickly
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