
Address Space Isolation for
Container Security

Mike Rapoport, James Bottomley
<{rppt,jejb}@linux.ibm.com>

This project has received funding from the European
Union’s Horizon 2020 research and innovation

programme under grant agreement No 825377

What you don't know won't hurt you

● Address space isolation is one of the best protection methods since

the invention of the virtual memory.

● Vulnerabilities are inevitable, how can we minimize the damage

● Make parts of the Linux kernel use a restricted address space for

better security

Related work

● Page Table Isolation
○ Restricted context for kernel-mode code on entry boundary

● WIP: improve mitigation for HyperThreading leaks
○ KVM address space isolation

■ Restricted context for KVM VMExit handlers

○ Process local memory
■ Kernel memory visible only in the context of a specific process

https://lore.kernel.org/lkml/1557758315-12667-1-git-send-email-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20190612170834.14855-1-mhillenb@amazon.de/

System Call Isolation (SCI)

● Execute system calls in a dedicated address space
○ System calls run with very limited page tables

○ Accesses to most of the kernel code and data cause page faults

● Ability to inspect and verify memory accesses
○ For code: only allow calls and jumps to known symbols to prevent ROP attacks

○ For data: TBD?

● Weakness
○ Cannot verify RET targets

○ Performance degradation

○ Page granularity

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/

mmap(MAP_SECRET)

● Memory region in a process is isolated from the rest of the system

● Can be used to store secrets in memory:

void *addr = mmap(MAP_SECRET, ...);
struct iovec iov = {

.base = addr,

.len = PAGE_SIZE,
};

fd = open_and_decrypt(“/path/to/secret.file”, O_RDONLY);
readv(fd, &iov, 1);

● Assumption: ‘struct page’ metadata is sufficient for block IO

Address space for netns

● Netns is an independent network stack
○ Network devices, sockets, protocol data

● Objects inside the network namespace are private
○ Except skb’s that cross namespace boundaries

● Let’s enforce privacy with page tables

Address space for netns

● Kernel page table per namespace
@@ -52,6 +52,7 @@ struct bpf_prog;
 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)

 struct net {
+ pgd_t *pgd; /* namespace private page table */

refcount_t passive; /* To decided when the network */
 /* namespace should be freed. */

● Processes in a namespace share view of the kernel mappings
○ Switch page table at clone(), unshare(), setns() time.

● Private kernel objects are mapped only in the namespace PGD

Suppose it works, now what?

● Makes sense for netns, what about others?

● How to handle nested namespaces?

● What userspace ABIs are needed?
○ On/off command line parameter?

○ proc or sysfs knobs?

○ Address space namespace?

● What is the actual security benefit?

Thank
You

Kernel address space

User Space

Files

Sockets

Page
Tables

Devices

System
Calls

Single
Address

Space

Syscall vulnerability

System
Calls

The entire
kernel is

compromised

User Space

Files
Sockets

Page Tables

Devices

SCI page tables

Kernel
Page Table

Kernel entry

User space

Kernel space

System call
Page Table

Kernel entry

User space

Syscall entry

User
Page Table

Kernel entry

User space

SCI flow

switch
address
space

access
unmapped

code
page fault

is access
safe?

No

Yes
map
the

page

switch
address
space

system
call

kill
process

Netns isolation overview

User Space

Files

Page Tables

System Calls

Generic Address

SpaceNAMESPACE

Sockets

Devices

Buffers

NAMESPACE

Sockets

Devices

Buffers Restricted Address
Space

Netns isolation - page tables

User
Space

Kernel
Space

Network
Namespace

U
1

U
2

U
n

U
1

U
2

U
n

N
1

K

N
1

U
1

KK
Kernel

mappings
for

namespace

PTI
pair

