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What you don't know won't hurt you

● Address space isolation is one of the best protection methods since 

the invention of the virtual memory.

● Vulnerabilities are inevitable, how can we minimize the damage

● Make parts of the Linux kernel use a restricted address space for 

better security



Related work

● Page Table Isolation
○ Restricted context for kernel-mode code on entry boundary

● WIP: improve mitigation for HyperThreading leaks
○ KVM address space isolation

■ Restricted context for KVM VMExit handlers

○ Process local memory
■ Kernel memory visible only in the context of a specific process

https://lore.kernel.org/lkml/1557758315-12667-1-git-send-email-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20190612170834.14855-1-mhillenb@amazon.de/


System Call Isolation (SCI)

● Execute system calls in a dedicated address space
○ System calls run with very limited page tables

○ Accesses to most of the kernel code and data cause page faults

● Ability to inspect and verify memory accesses
○ For code: only allow calls and jumps to known symbols to prevent ROP attacks

○ For data: TBD?

● Weakness
○ Cannot verify RET targets

○ Performance degradation

○ Page granularity

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/


mmap(MAP_SECRET)

● Memory region in a process is isolated from the rest of the system

● Can be used to store secrets in memory:

void *addr = mmap(MAP_SECRET, ...);
struct iovec iov = { 

.base = addr,

.len = PAGE_SIZE,
};

fd = open_and_decrypt(“/path/to/secret.file”, O_RDONLY);
readv(fd, &iov, 1);

● Assumption: ‘struct page’ metadata is sufficient for block IO



Address space for netns

● Netns is an independent network stack
○ Network devices, sockets, protocol data

● Objects inside the network namespace are private
○ Except skb’s that cross namespace boundaries

● Let’s enforce privacy with page tables



Address space for netns

● Kernel page table per namespace
@@ -52,6 +52,7 @@ struct bpf_prog;
 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)

 struct net {
+   pgd_t               *pgd;       /* namespace private page table */

refcount_t          passive;    /* To decided when the network */
                                             /* namespace should be freed. */

● Processes in a namespace share view of the kernel mappings
○ Switch page table at clone(), unshare(), setns() time.

● Private kernel objects are mapped only in the namespace PGD



Suppose it works, now what?

● Makes sense for netns, what about others?

● How to handle nested namespaces? 

● What userspace ABIs are needed?
○ On/off command line parameter?

○ proc or sysfs knobs?

○ Address space namespace?

● What is the actual security benefit?
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Syscall vulnerability
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SCI page tables
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SCI flow
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Netns isolation overview
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Netns isolation - page tables
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