Western Digital

RISC-V Hypervisor Status

Alistair Francis, Anup Patel, Atish Patra

Linux Plumbers - Lisbon

9th of September 2019

RISC-V H-Extension

RISC-V H-Extension: Spec Status

H-Extension spec close to freeze state

- v0.4-draft was released on June 16th
 - This includes feedback from Open Source virtualisation projects
 - Additions have happened to the spec since
 - htimedelta/htimedeltah CSR (Proposed by WDC Merged)
 - Dedicated exception causes for Guest page table faults (Proposed by John Hauser In Review)
 - hgip CSR for better virtual interrupt injection (Proposed by WDC In Review)
 - htinst & htval2 CSRs for better MMIO emulation (Proposed by WDC and extended by John Hauser In Review)
- RISC-V Virtualisation is much similar to ARM-VHE then the original AArch64 Virtualisation
- WDC's initial QEMU, Xvisor and KVM ports were based on v0.3
- They have all been updated to the new v0.4 spec
 - There were limited software changes required between v0.3 and v0.4
 - QEMU required more changes

RISC-V H-Extension: Privilege Mode Changes

New execution modes for guest execution

- HS-mode = S-mode with hypervisor capabilities and new CSRs
- Two additional modes:
 - VS-mode = Virtualized S-mode
 - VU-mode = Virtualized U-mode

RISC-V H-Extension: CSR changes

More control registers for virtualising S-mode

- Additional virtual copies of most S-mode CSRs
- In HS-mode (V=0),
 - "s<xyz>" CSRs point to standard "s<xyz>" CSRs
 - "hs<xyz>" CSRs for hypervisor capabilities
 - "vs<xyz>" CSRs contains VS-mode state
- In VS-mode (V=1)
 - "s<xyz>" CSRs point to virtual "vs<xyz>" CSRs

RISC-V H-Extension: Two-stage MMU

Hardware optimized guest memory management

• Two-Stage MMU for VS/VU-mode:

- VS-mode page table (Stage1):
 - Translates Guest Virtual Address (GVA) to Guest Physical Address (GPA)
 - Programmed by Guest (same as before)
- HS-mode guest page table (Stage2):
 - Translates Guest Physical Address (GPA) to Host Physical Address (HPA)
 - Programmed by Hypervisor
- In HS-mode, software can program two page tables:
 - HS-mode page table: Page table to translate hypervisor Virtual Address (VA) to Host Physical Address (HPA)
 - HS-mode guest page table: Same as above
- Format of VS-mode page table, HS-mode guest page table and HS-mode host page table is same (Sv32, Sv39, Sv48,)

RISC-V H-Extension: I/O & Interrupts

I/O and guest interrupts virtualization

- Virtual interrupts injected by updating VSIP CSR from HS-mode
- Software and Timer Interrupts:
 - Hypervisor will emulate SBI calls for Guest
- HS-mode guest page table can be used to trap-n-emulate MMIO accesses for:
 - Software emulated PLIC
 - VirtIO devices
 - Other software emulated peripherals

QEMU: Register Swapping

How to handle Hypervisor Register Swapping?

- How to handle the current S-Mode CSR swapping with virtual/hypervisor CSR
- Currently:
 - Using pointers to handle M-Mode CSRs that are exposed as S-Mode (mstatus, mie)
 - Value swapping the S-Mode only CSRs
 - MIP CSR (atomically accessed) is value swapped as well

RISC-V Hypervisors

Which Hypervisors Ported ?

• We have ported both Type1 and Type2 hypervisors for RISC-V. This helps us:

- Provide feedback to RISC-V H-Extension ISA authors
- Validate functional completeness of the RISC-V H-Extension spec
- Gives confidence to HW designers for implementing this in HW
- World's first RISC-V Type1 hypervisor is Xvisor (Refer, <u>http://xhypervisor.org/</u>)
- World's first RISC-V Type2 hypervisor is KVM (Refer, <u>https://www.linux-kvm.org/page/Main_Page</u>)

Xvisor RISC-V

VU-mode

VS-mode

HS-mode

M-mode

Linux KVM RISC-V

KVM RISC-V on GitHub

- KVM RISC-V git repo (shared between Me and Atish): <u>https://github.com/kvm-riscv/linux.git</u>
- KVMTOOL RISC-V git repo: <u>https://github.com/kvm-riscv/kvmtool.git</u>
- KVM RISC-V wiki: <u>https://github.com/kvm-riscv/howto/wiki</u> <u>https://github.com/kvm-riscv/howto/wiki/KVM-RISCV64-on-QEMU</u>

Current Status

Upstream Status

- **QEMU:** Hypervisor Extension support patches sent
- **OpenSBI:** Patches sent, waiting for more review comments
- Xvisor: Patches merged in Xvisor-next, will be part of next release towards year end
- Linux KVM: Patches reviewed and acked, waiting for merge in next Linux release
- KVMTOOL: Patches not up-streamed, we wanted Linux KVM patches to accepted first
- QEMU-KVM: Not started yet, we wanted Linux KVM patches to accepted first
- Libvirt: Not started yet, this will be done after QEMU-KVM is available

Still To Do

• QEMU

- Get 32-bit Xvisor working
- Update implementation with new spec releases
- Allow changing XLEN for S-mode from M-mode
- Allow changing XLEN for VS-mode from HS-mode

Xvisor

- Get 32-bit Xvisor working
- Bring-up on real-HW or FPGA
- Emulate SBI v0.2 and SBI v0.2 extensions for Guest kernel
- Virtualize vector extensions
- Allow 32bit Guest on 64bit Host
- Allow big-endian Guest on little-endian Host and vice-versa

Still To Do

• KVM

- Get 32-bit KVM working
- Bring-up on real-HW or FPGA
- KVM unit test support
- Emulate SBI v0.2 and SBI v0.2 extensions for Guest kernel
- Virtualize vector extensions
- In-kernel PLIC emulation
- Upstream KVMTOOL changes
- QEMU KVM support
- Guest/VM migration support
- Libvirt support
- Allow 32bit Guest on 64bit Host
- Allow big-endian Guest on little-endian Host and vice-versa

Questions & Suggestions

Western Digital.

Western Digital and the Western Digital logo are registered trademarks or trademarks of Western Digital Corporation or its affiliates in the US and/or other countries. Debian is a registered trademark owned by Software in the Public Interest, Inc. Linux[®] is the registered trademark of Linus Torvalds in the U.S. and other countries. Fedora is a registered trademark of Red Hat, Inc. in the U.S. and other countries. All other marks are the property of their respective owners.