
1

malloc for everyone

Jérôme Glisse

2

CPU IS NOT ALONE

New, highly parallel, workload:
- AI model training and model execution
- Image processing (recognition, enhancement, ...)
- Math large dataset (matrices, vectors, ...)
- Signal processing (FFT, ...)

GPU, FPGA, DSP can be 100x faster, or more, than CPU

3

LIBRARY AND MODULARITY

Increase in program modularity:
- Use more and more library (BLAS, math, FFT, ...)
- Versatile program pipeline (enable/disable block)
- Many input sources (disk, network, sensor, ...)

Programmers no longer control all the code, they rely
more and more on ready to use building blocks.

4

DATA COMING AND GOING
EVERYWHERE

Processors (CPU, GPU, FPGA, ...) work on data from/to
various devices:

- Network
- Storage
- Sensors
...

Having CPU passing data from input/output device to
other processors (GPU, FPGA, ...) is a bottleneck !

5

DATA-FLOW EVERYWHERE

Computation pipeline can interleave various processors
(CPU, GPU, FPGA, ...)

Having CPU being a middleman between each processor
is a bottleneck !

6

WHAT IS AN ADDRESS SPACE ?

An address space is a mapping between virtual address
(pointers in your program) and physical memory.

Each programs on your computer have their own CPU
address space (fork and exec).

Each CPUs threads of a program share a common
address space (pthread).

malloc()/free() is what manage the address space
(mmap/munmap from kernel perspective)

7

DEVICE ADDRESS SPACE

Each device can have its own address space manage
through device specific API (DeviceAPIMalloc)

For flat dataset (matrix, vector, image, ...) this is not too
hard (DeviceAPIMalloc follow by DeviceAPIMemcopy).

It is hard and error prone for complex dataset (any kind
of graph, collections, ...) have to re-allocate into device
address each node and re-build the pointers graph.

8

DEVICE ADDRESS SPACE
GRAPH EXAMPLE

Duplicating a list into a device address space:
device_prev_entry = NULL;
list_for_each_entry(entry, head, list) {

struct mystruct *device_entry = deviceAPIMalloc();
deviceMemcopy(device_entry->data, entry->data);
device_entry->next = NULL;
if (device_prev_entry) {

device_prev_entry->next = deviceAPIPointer(device_entry);
}
device_prev_entry = device_entry;

}

9

SAME ADDRESS SPACE FOR
EVERYONE

Would it not be easier if all compute device (GPU,
FPGA, ...) had the same address space ?

It would mean all compute device would be able to
access any CPU valid pointers.

Yes it is easier !

10

NOT ALL PHYSICAL MEMORY IS
EQUAL

Multiple type of physical memory:
- Main memory (DDR DIMM reasonably fast 60GB/s)
- HBM (faster than a roadrunner 200GB/s to 1000GB/s)
- Device memory (200GB/s to 1000GB/s local access)

System bus (PCIE for instance) can be a bottleneck.

11

AN OPTIMIZATION PROBLEM
NUMA IS BACK AND HE IS ANGRY

When a processor (CPU, GPU, FPGA, ...) works on a
dataset (range of virtual address) you want to use the
fastest physical memory to back the range if virtual
address.

A dataset can be worked on by different processors
(CPU, GPU, ...) one after the other. What is the fastest
memory for the first processor might not be for the
second.

NUMA all over again !

12

MIGRATION FOR EVERYONE

To use the fastest memory means we have to migrate from
on type of physical memory to another (for a range of
virtual address).

For multi-sockets CPUs, ie NUMA system, we have an API:
- migrate_pages()
- move_pages()
- mbind()

13

MIGRATE_PAGES() THE HAMMER

migrate_pages(int pid, unsigned long maxnode,
 const unsigned long *old_nodes,
 const unsigned long *new_nodes)

Move all pages in a process to another set of nodes.

Big hammer, not what we want, we can have different
processors (CPU, GPU, ...) working concurrently on different
dataset (range of virtual address).

14

MOVE_PAGES() THE CHERRY PICKER

move_pages(int pid, unsigned long count, void **pages,
 const int *nodes, int *status, int flags)

Move individual pages of a process to another node, one by
one ... that’s a lot of pages for giga bytes dataset (1GB/4KB
= 2^18 = 262144)

Cherry picking one page at a time is highly flexible but also
highly intensive (building pages and nodes array).

Not the most efficient way.

15

MBIND()

mbind(void *addr, unsigned long len, int mode,
 const unsigned long *nodemask,

 unsigned long maxnode, unsigned flags)

Set memory policy for a memory range. The nodemask
points to a bit mask of nodes containing up to maxnode
bits. If bits N is set then it means you want to use memory
on node N. Multiple bits can be set so that kernel can use
multiple nodes.

Almost it ...

16

A HANDFUL OF NODES

Each time we migrate something we are usualy targeting a
handful of possible physical memory and with an order
preference ie first try to use the fastest, if you run out
fallback to the second one, ...

A nodemask is wasteful (highly sparse ie many zero bits)
and lack ordering.

17

NODE IS NOT JUST ONE TYPE OF
MEMORY

Using node for migration target fails to capture the node
complexity. Each node can have multiple different types of
physical memory (HBM, DDR DIMM, Persistent DIMM, ...).

So instead of node, what we want is to be able to specify
which physical memory directly.

18

DREAMING OF

pmbind(void *addr, unsigned long len, int mode,
 const unsigned long *physmemids,

 unsigned long maxids, unsigned flags)

Bind a range of virtual address [addr, addr+len] to the
ordered list of physical memory whose identifient are pass
in physmemids.

Can replace mbind() as a more versatile solution.

19

IDENTITY CRISIS

We need to be able to identify physical memory (including
device memory) in a system with an id.

Sadly /sys/devices/system/memory/ is a wreck (one id per
128MB section on x86-64)

Existing programs do have expectations from memory in
/sys/devices/system/memory/ and device memory can not
full-fill those expectation (cache coherency, atomics, ...).

20

NEW ORDER

A new memory device in driver model.

One id for each physical memory with same characteristics:
- One id for all DDR DIMM in a node
- Each node can have multiple id for different memory
- Each device can have multiple id for different memory

All in /sys/devices/system/memoryids/ with:
- link to node (even device are attached to a node)
- link to device (if the memory belong to a device)
- info (local: bandwidth, latency, ...)

21

SPEAK NOW

Who is against ?

linkedin.com/company/red-
hat

youtube.com/user/
RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

22

Red Hat is the world’s leading provider of

enterprise open source software solutions.

Award-winning support, training, and consulting

services make Red Hat a trusted adviser to the

Fortune 500.

O
P
T
IO

N
A

L S
E
C

T
IO

N
 M

A
R

K
E
R

 O
R

 T
IT

LE

Thank you

CONFIDENTIAL Designator

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

