

Agenda

• Introduction to Gen-Z

• Kernel Sub-system

• Discovery

• Questions

8/30/2019 2

Gen-Z, A New Open Interconnect Protocol

8/30/2019 3

I/O

Accelerators

FPGA
GPU

CPUs

SoC
ASICAI

MemoryMemory

Network Storage

Direct Attach, Switched, or Fabric Topology

Memory technologies

DRAM NVM SCM…

SoC

Memory

• Open consortium with broad industry support (70+ members)

• Family of Specifications: Core, Physical Layer, Mechanical,
Scalable Connectors, Management

• Gen-Z is a memory semantic fabric that scales from 2 to
256M components

• PHY-independent protocol

• Specific PHY determines latency/bandwidth/reach

• 32 GT/s PCIe PHY, 25 Gbit and 50 Gbit 802.3 PHYs

• Can support an unmodified OS (e.g. firmware with ACPI
support and Logical PCI Devices (LPDs))

• This talk is about modifying Linux for full Gen-Z support

Example Gen-Z Fabrics

8/30/2019 4

SwitchSwitch 0,0

CPUs

Bridge

Node

SwitchSwitch 1,0

SwitchSwitch 0,1

SwitchSwitch 0,N

SwitchSwitch M,0

SwitchSwitch M,1SwitchSwitch 1,1

SwitchSwitch 1,N SwitchSwitch M,N

CPUs

Bridge

Node

CPUs

Bridge

Node

2D HyperX System Topology

Nodes Nodes Nodes

Nodes Nodes Nodes

Simple 6 Component Topology

Gen-Z Management Software

8/30/2019 5

• Gen-Z fabric spans multiple OS instances

• No OS instance can assume it “owns” all components on fabric

• Components can be subdivided into resources

• Example: a big media component split up

• A fabric manager assigns components/resources to each OS according to a “grand plan”

• Describes components/resources using a DMTF Redfish specification

• In-band vs out-of-band

• Programs routing tables

• Local Management Services run on each OS instance

• Consumes Redfish description for its OS instance

Basic Gen-Z Concepts

8/30/2019 6

• Basic component roles

• Requester: initiates packet

• Responder: responds to request packet and sends
acknowledgement (if specified)

• Switch: routes packets from ingress interface to one or more
egress interfaces

• Components have a 28-bit global component ID (GCID)
assigned by management software

• Optional 16-bit subnet ID (SID) plus 12-bit component ID (CID)

• Components have separate control and data space

• Up to 2^52 bytes of control space for management

• Up to 2^64 bytes of data space for component specific
functionality

• Packets are unordered by default (big difference from PCIe)

• Software-managed coherence

Component—CID 1

Control Address Space
Address

0—X

Data Address Space
Address

0—Y

Interface 0 Interface 1

Control Space Structures

8/30/2019 7

• Core Structure always at
Control Space address 0

• Follow pointers to find other
Structures and Tables

Control Space

Component Media Structure

Component Extensions
Structure

Component Statistics
Structure

Component OpCode Set
Structure

Component Error Structure

Component Destination
Table Structure

Component Switch Structure

Component ID Structure

Component Advanced
Features Structure

Component Service ID
Structure

Interface 0
Structure

Interface 1
Structure

Interface N
Structure

Interface PHY Structure

Interface Statistic Structure

Interface Vendor-Defined
Structure

Vendor-Defined Structure

Core
Structure

Bridge Component Block Diagram

8/30/2019 8

Memory

CPU

Bridge

Requester
ZMMU

Gen-Z
Control
Space

Gen-Z Requester

o o oo o o

Z
A

,
G

C
ID

,
R

-K
e
y

Z
A

,
R

-K
e
y

MMU

P
A

P
A

IOVA, PASID

Receive
Data

Mover
(RDM)

IOMMU

IOVA, PASID

Responder
ZMMU

In-Band Management: ZA, R-Key

Transmit
Data

Mover
(XDM)

PA

To Gen-Z Links From Gen-Z Links

P
A

P
A

Gen-Z Responder

ZMMUs

8/30/2019 9

● OS-managed

● Requester ZMMU
• Converts CPU/XDM physical address to Gen-Z address (ZA), checks PASID, and looks up GCID, R-Key, Traffic class

● Responder ZMMU

● Data space only

● Converts ZA to IOVA, checks the packet’s R-Key against PTE’s R-Keys, and looks up the PASID

● IOVA and PASID passed on to IOMMU (if there is one), else PA passed on

● Page Grids vs. Page Tables

● Page-Table-based ZMMUs have multi-level, forward-mapped page tables in local memory, with HW caching

● Page-Grid-based ZMMUs have fixed number of PTEs on component, directly managed by OS

Agenda

8/30/2019 10

• Introduction to Gen-Z

• Kernel Sub-system

• Discovery

• Questions

Why a Gen-Z Sub-system?

8/30/2019 11

• Enable native device drivers, exposing the full capabilities of Gen-Z

• Enables access to Gen-Z advanced features

• Sharing of fabric resources across Linux instances

• Enable user space fabric managers and local management
services

• Both in-band and out-of-band fabric managers

• Why now?

• So that Linux can support Gen-Z devices when hardware is available

• Interrupts

• Atomics

• R-Key Update Packets

• Buffer Requests

• Pattern Requests

• Multi-Op Requests

• Coherence Protocol

• Precision Time

• Lightweight Notification

• Wake Thread

• Packet Encapsulation

• Transparent Routers

• Strong Ordering Domains

Gen-Z Advanced Features

Design Considerations

8/30/2019 12

• Be like PCI, USB and other existing buses when we can

• Policy in user space and mechanism in the kernel

• Use existing kernel services

• Deal with “almost everything is optional in Gen-Z”

Gen-Z Sub-system Block Diagram

8/30/2019 13

U
s
e
r

S
p

a
c
e

/sys file system infrastructure

K
e
rn

e
l

S
p

a
c
e

Remotely Managed Enumeration Data

Gen-Z Manager (Zephyr)

Standard Posix API

udev daemon

Driver: Gen-Z Bridge Device

Gen-Z infrastructure

Driver: Gen-Z native device

Gen-Z Management
Infrastructure

Linux Application

Gen-Z Management API

Linux Local Management
Service (LLaMaS)

Hotplug infrastructure

Gen-Z Native Enumeration

Existing
New for Gen-Z in Linux
Created by Device Manufacturer

Gen-Z Driver infrastructure

bus

DMA

Generic Netlink

Gen-Z Sub-system Kernel Interfaces

8/30/2019 14

U
s
e
r

S
p

a
c
e

/sys file system infrastructure

K
e
rn

e
l

S
p

a
c
e

Remotely Managed Enumeration Data

Gen-Z Manager (Zephyr)

Standard Posix API

udev daemon

Driver: Gen-Z Bridge Device

Gen-Z infrastructure

Driver: Gen-Z native device

Gen-Z Management
Infrastructure

Linux Application

Gen-Z Management API

Linux Local Management
Service (LLaMaS)

Hotplug infrastructure

Gen-Z Native Enumeration

Existing
New for Gen-Z in Linux
Created by Device Manufacturer

Gen-Z Driver infrastructure

bus

DMA

Generic Netlink

Bridge Driver Registration

8/30/2019 15

● genz_register_bridge(struct device *dev, struct genz_bridge_driver *zbdrv);

● Called during the driver probe function for the native bus of the bridge device driver.

● Creates the sysfs file for the bridge device so that the Fabric Manager can start discovery

● genz_bridge_driver structure has function pointers for:

● Bridge info

● Control space read/write/mmap

● Data space read/write/mmap

● Control write message

● genz_unregister_bridge(struct device *dev);

Device Driver Registration

8/30/2019 16

● Similar to PCI’s interfaces except driver matching is by UUID rather than vendor/device ID

● genz_register_driver(struct genz_driver *driver, struct module *mod, const char *mod_name)

● genz_driver structure has function pointers for:

● Probe

● Remove

● Suspend

● Resume

● genz_unregister_driver(struct genz_driver *driver)

Sub-system ZMMU and IOMMU Management

8/30/2019 17

● Map control space ZMMU entries for sysfs read/write

● Drivers map control/data resources through the ZMMU

● Still designing ZMMU API
● Want to hide page grid vs. page table based ZMMU differences

● The Gen-Z sub-system needs to provide APIs for tracking PASIDs in the ZMMU and IOMMU
● Question: Should there be a generic Linux interface for tracking PASIDs?

● Question: How do we map huge pages for Gen-Z device memory?
● A Gen-Z Fabric can contain a large number of components each with an enormous data space

● Gen-Z PTEs allow a choice of page sizes

● For Page Grid based ZMMUs, there are a fixed number PTEs and so you have to use huge pages

● Our understanding is that huge pages for device memory is not well supported

● Question: What is status of Shared Virtual Addressing (SVA) for the IOMMU?
● The Gen-Z sub-system would use this proposed interface to hide IOMMU differences

Data Movers

8/30/2019 18

● Kernel drivers like a block or eNIC driver would benefit from a generic data mover interface

● Data mover queues can be assigned to other Gen-Z drivers

● Drivers can use a data mover to generate Gen-Z packet types like atomics, write message, buffer and pattern
requests

● RDMA drivers want to expose the native data mover hardware to user space

● This argues for no generic Gen-Z sub-system data mover support

● Question: Should the Gen-Z sub-system implement a generic data mover interface?

Interrupts and Unsolicited Event Packets

• Not like PCI’s architected MSI/MSI-X interrupts

• Interrupt sources:

• Gen-Z interrupt packets from components

• Local bridge data movers

• UEPs

• Unsolicited Event Packets (UEP) signal fabric state changes like

• Link-up/down

• Hot add/remove of component

• Errors

• UEPs become interrupts from the targeted bridge component

• Vectored to sub-system and forwarded to user space

8/30/2019 19

Agenda

8/30/2019 20

• Introduction to Gen-Z

• Kernel Sub-system

• Discovery

• Questions

Gen-Z Sub-system User Space Interfaces

8/30/2019 21

U
s
e
r

S
p

a
c
e

/sys file system infrastructure

K
e
rn

e
l

S
p

a
c
e

Remotely Managed Enumeration Data

Gen-Z Manager (Zephyr)

Standard Posix API

udev daemon

Driver: Gen-Z Bridge Device

Gen-Z infrastructure

Driver: Gen-Z native device

Gen-Z Management
Infrastructure

Linux Application

Gen-Z Management API

Linux Local Management
Service (LLaMaS)

Hotplug infrastructure

Gen-Z Native Enumeration

Existing
New for Gen-Z in Linux
Created by Device Manufacturer

Gen-Z Driver infrastructure

bus

DMA

Generic Netlink

Gen-Z Discovery

8/30/2019 22

• All nodes run local management services
• For resources visible to a node, LLaMaS sends a Netlink “add

component” command

• Gen-Z sub-system creates a sysfs tree for resources in
/sys/devices/genzN/SID/CID/RESOURCE

• Gen-Z driver binds to resource’s UUID

• What Fabric Manager discovers: interfaces, switches, bridges, media
• Fabric Manager does a recursive walk of the fabric to configure and

assign GCIDs to all components

• For all discovered components, Zephyr sends a Netlink “add fabric
component” command

• Gen-Z sub-system creates a sysfs tree for components in
/sys/bus/genz/fabricN/SID/CID

• Generic Netlink communication to inform kernel of add/delete of
components and resources

• Question: Is generic Netlink the best choice for communication between
user space and the kernel?

Managed Node sysfs Example

8/30/2019 23

└── sys

└── devices

├── genz0

│ ├── 0000

│ │ ├── 002

│ │ │ ├── c_class

│ │ │ ├── fru_uuid

│ │ │ ├── gcid

│ │ │ ├── memory0

│ │ │ │ ├── control0

│ │ │ │ ├── data0

│ │ │ │ └── uuid

│ │ │ └── memory1

│ │ │ ├── control0

│ │ │ ├── control1

│ │ │ ├── data0

│ │ │ └── uuid

│ ├── bridge0 -> ../pci0000:42/0000:42:07.0/genz0

│ └── mgr_uuid

└── pci0000:42

└── 0000:42:07.0

└── genz0

├── control

│ ├── component_c_access

│ ├── component_destination_table

│ ├── component_error_and_signal_event

│ ├── component_pa

│ ├── component_page_grid

│ ├── component_switch

│ ├── core

│ ├── interface

│ └── opcode_set

└── gcid

Fabric Manager Node sysfs Example

8/30/2019 24

└── sys

└── bus

└── genz

├── devices

│ ├── 0:0000:000 -> ../../../devices/genz/0000/000

│ ├── 0:0000:002 -> ../../../devices/genz/0000/002

│ └── 0:0000:003 -> ../../../devices/genz/0000/003

└── fabric0

└── 0000

├── 000

│ ├── component_c_access

│ ├── component_destination_table

│ ├── component_error_and_signal_event

│ ├── component_pa

│ ├── component_page_grid

│ ├── component_switch

│ ├── core

│ ├── interface

│ └── opcode_set

├── 001

│ ...

├── 002

│ ├── component_c_access

│ ├── component_destination_table

│ ├── component_error_and_signal_event

│ ├── component_media

│ ├── core

│ ├── interface

│ └── opcode_set

├── 003

│ ...

├── 004

│ ...

└── 005

...

Question: Is the proposed sysfs hierarchy

consistent with Linux’s intended sysfs usage?

Agenda

8/30/2019 25

• Introduction to Gen-Z

• Kernel Sub-system

• Discovery

• Questions

Summary of Questions

8/30/2019 26

• Gen-Z uses PASIDs and the sub-system could use generic PASID interfaces. Any interest in this
elsewhere in the kernel?

• How do we map huge pages for Gen-Z device memory?

• What is status of Shared Virtual Addressing (SVA) for the IOMMU?

• Should the Gen-Z sub-system implement a generic data mover interface?

• Is generic Netlink the best choice for communication between user space and the kernel?

• Is the proposed sysfs hierarchy consistent with Linux’s intended sysfs usage?

References

8/30/2019 27

● Gen-Z Consortium for specification: genzconsortium.org

● Gen-Z Linux Subsystem: github.com/linux-genz/linux

● LLaMaS github: github.com/linux-genz/llamas

● Alpaka github: github.com/linux-genz/python3-alpaka

