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• Open consortium with broad industry support (70+ members)

• Family of Specifications: Core, Physical Layer, Mechanical, 
Scalable Connectors, Management

• Gen-Z is a memory semantic fabric that scales from 2 to 
256M components

• PHY-independent protocol

• Specific PHY determines latency/bandwidth/reach

• 32 GT/s PCIe PHY, 25 Gbit and 50 Gbit 802.3 PHYs

• Can support an unmodified OS (e.g. firmware with ACPI 
support and Logical PCI Devices (LPDs))

• This talk is about modifying Linux for full Gen-Z support



Example Gen-Z Fabrics
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Gen-Z Management Software
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• Gen-Z fabric spans multiple OS instances

• No OS instance can assume it “owns” all components on fabric

• Components can be subdivided into resources

• Example: a big media component split up

• A fabric manager assigns components/resources to each OS according to a “grand plan”

• Describes components/resources using a DMTF Redfish specification 

• In-band vs out-of-band

• Programs routing tables

• Local Management Services run on each OS instance

• Consumes Redfish description for its OS instance



Basic Gen-Z Concepts
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• Basic component roles

• Requester: initiates packet

• Responder: responds to request packet and sends 
acknowledgement (if specified)

• Switch: routes packets from ingress interface to one or more 
egress interfaces

• Components have a 28-bit global component ID (GCID) 
assigned by management software

• Optional 16-bit subnet ID (SID) plus 12-bit component ID (CID)

• Components have separate control and data space

• Up to 2^52 bytes of control space for management

• Up to 2^64 bytes of data space for component specific 
functionality

• Packets are unordered by default (big difference from PCIe)

• Software-managed coherence

Component—CID 1

Control Address Space
Address 

0—X

Data  Address Space 
Address 

0—Y

Interface 0 Interface 1 



Control Space Structures
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• Core Structure always at 
Control Space address 0

• Follow pointers to find other 
Structures and Tables
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Bridge Component Block Diagram
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ZMMUs

8/30/2019 9

● OS-managed

● Requester ZMMU
• Converts CPU/XDM physical address to Gen-Z address (ZA), checks PASID, and looks up GCID, R-Key, Traffic class

● Responder ZMMU

● Data space only

● Converts ZA to IOVA, checks the packet’s R-Key against PTE’s R-Keys, and looks up the PASID

● IOVA and PASID passed on to IOMMU (if there is one), else PA passed on

● Page Grids vs. Page Tables

● Page-Table-based ZMMUs have multi-level, forward-mapped page tables in local memory, with HW caching

● Page-Grid-based ZMMUs have fixed number of PTEs on component, directly managed by OS
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Why a Gen-Z Sub-system?
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• Enable native device drivers, exposing the full capabilities of Gen-Z

• Enables access to Gen-Z advanced features

• Sharing of fabric resources across Linux instances

• Enable user space fabric managers and local management 
services

• Both in-band and out-of-band fabric managers

• Why now? 

• So that Linux can support Gen-Z devices when hardware is available

• Interrupts

• Atomics

• R-Key Update Packets

• Buffer Requests

• Pattern Requests

• Multi-Op Requests

• Coherence Protocol

• Precision Time

• Lightweight Notification

• Wake Thread

• Packet Encapsulation

• Transparent Routers

• Strong Ordering Domains

Gen-Z Advanced Features



Design Considerations
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• Be like PCI, USB and other existing buses when we can

• Policy in user space and mechanism in the kernel

• Use existing kernel services

• Deal with “almost everything is optional in Gen-Z”



Gen-Z Sub-system Block Diagram
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Gen-Z Sub-system Kernel Interfaces
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Bridge Driver Registration
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● genz_register_bridge(struct device *dev, struct genz_bridge_driver *zbdrv);

● Called during the driver probe function for the native bus of the bridge device driver.

● Creates the sysfs file for the bridge device so that the Fabric Manager can start discovery

● genz_bridge_driver structure has function pointers for:

● Bridge info

● Control space read/write/mmap

● Data space read/write/mmap

● Control write message

● genz_unregister_bridge(struct device *dev);



Device Driver Registration
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● Similar to PCI’s interfaces except driver matching is by UUID rather than vendor/device ID 

● genz_register_driver(struct genz_driver *driver, struct module *mod, const char *mod_name)

● genz_driver structure has function pointers for:

● Probe

● Remove

● Suspend

● Resume

● genz_unregister_driver(struct genz_driver *driver)



Sub-system ZMMU and IOMMU Management
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● Map control space ZMMU entries for sysfs read/write

● Drivers map control/data resources through the ZMMU

● Still designing ZMMU API 
● Want to hide page grid vs. page table based ZMMU differences

● The Gen-Z sub-system needs to provide APIs for tracking PASIDs in the ZMMU and IOMMU
● Question: Should there be a generic Linux interface for tracking PASIDs?

● Question: How do we map huge pages for Gen-Z device memory? 
● A Gen-Z Fabric can contain a large number of components each with an enormous data space

● Gen-Z PTEs allow a choice of page sizes

● For Page Grid based ZMMUs, there are a fixed number PTEs and so you have to use huge pages

● Our understanding is that huge pages for device memory is not well supported

● Question: What is status of Shared Virtual Addressing (SVA) for the IOMMU? 
● The Gen-Z sub-system would use this proposed interface to hide IOMMU differences



Data Movers
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● Kernel drivers like a block or eNIC driver would benefit from a generic data mover interface

● Data mover queues can be assigned to other Gen-Z drivers

● Drivers can use a data mover to generate Gen-Z packet types like atomics, write message, buffer and pattern 
requests

● RDMA drivers want to expose the native data mover hardware to user space

● This argues for no generic Gen-Z sub-system data mover support

● Question: Should the Gen-Z sub-system implement a generic data mover interface?



Interrupts and Unsolicited Event Packets

• Not like PCI’s architected MSI/MSI-X interrupts

• Interrupt sources:

• Gen-Z interrupt packets from components

• Local bridge data movers

• UEPs

• Unsolicited Event Packets (UEP) signal fabric state changes like 

• Link-up/down 

• Hot add/remove of component 

• Errors

• UEPs become interrupts from the targeted bridge component

• Vectored to sub-system and forwarded to user space
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Gen-Z Sub-system User Space Interfaces
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Gen-Z Discovery

8/30/2019 22

• All nodes run local management services
• For resources visible to a node, LLaMaS sends a Netlink “add 

component” command 

• Gen-Z sub-system creates a sysfs tree for resources in 
/sys/devices/genzN/SID/CID/RESOURCE

• Gen-Z driver binds to resource’s UUID

• What Fabric Manager discovers: interfaces, switches, bridges, media
• Fabric Manager does a recursive walk of the fabric to configure and 

assign GCIDs to all components

• For all discovered components, Zephyr sends a Netlink “add fabric 
component” command 

• Gen-Z sub-system creates a sysfs tree for components in 
/sys/bus/genz/fabricN/SID/CID

• Generic Netlink communication to inform kernel of add/delete of 
components and resources

• Question: Is generic Netlink the best choice for communication between 
user space and the kernel?



Managed Node sysfs Example
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└── sys

└── devices

├── genz0

│ ├── 0000

│ │ ├── 002

│ │ │ ├── c_class

│ │ │ ├── fru_uuid

│ │ │ ├── gcid

│ │ │ ├── memory0

│ │ │ │ ├── control0

│ │ │ │ ├── data0

│ │ │ │ └── uuid

│ │ │ └── memory1

│ │ │ ├── control0

│ │ │ ├── control1

│ │ │ ├── data0

│ │ │ └── uuid

│   ├── bridge0 -> ../pci0000:42/0000:42:07.0/genz0

│   └── mgr_uuid

└── pci0000:42

└── 0000:42:07.0

└── genz0

├── control

│ ├── component_c_access

│ ├── component_destination_table

│ ├── component_error_and_signal_event

│ ├── component_pa

│ ├── component_page_grid

│ ├── component_switch

│ ├── core

│ ├── interface

│ └── opcode_set

└── gcid



Fabric Manager Node sysfs Example
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└── sys

└── bus

└── genz

├── devices

│ ├── 0:0000:000 -> ../../../devices/genz/0000/000

│ ├── 0:0000:002 -> ../../../devices/genz/0000/002

│ └── 0:0000:003 -> ../../../devices/genz/0000/003

└── fabric0

└── 0000

├── 000

│ ├── component_c_access

│ ├── component_destination_table

│ ├── component_error_and_signal_event

│ ├── component_pa

│ ├── component_page_grid

│ ├── component_switch

│ ├── core

│ ├── interface

│ └── opcode_set

├── 001

│ ...

├── 002

│ ├── component_c_access

│ ├── component_destination_table

│ ├── component_error_and_signal_event

│ ├── component_media

│ ├── core

│ ├── interface

│ └── opcode_set

├── 003

│ ...

├── 004

│ ...

└── 005

...

Question: Is the proposed sysfs hierarchy 

consistent with Linux’s intended sysfs usage? 



Agenda

8/30/2019 25

• Introduction to Gen-Z

• Kernel Sub-system 

• Discovery

• Questions



Summary of Questions
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• Gen-Z uses PASIDs and the sub-system could use generic PASID interfaces. Any interest in this 
elsewhere in the kernel? 

• How do we map huge pages for Gen-Z device memory?

• What is status of Shared Virtual Addressing (SVA) for the IOMMU?

• Should the Gen-Z sub-system implement a generic data mover interface?

• Is generic Netlink the best choice for communication between user space and the kernel? 

• Is the proposed sysfs hierarchy consistent with Linux’s intended sysfs usage? 



References
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● Gen-Z Consortium for specification: genzconsortium.org

● Gen-Z Linux Subsystem: github.com/linux-genz/linux

● LLaMaS github: github.com/linux-genz/llamas

● Alpaka github: github.com/linux-genz/python3-alpaka


