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Motivation

a. Ftrace: The official tracer of the Linux kernel (No need to explain
this)

b. Is the Ftrace data Big Data?
* Not necessarily. It depends how you use it.
* Extremely sophisticated instrument. Large variety of use cases.
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Motivation

a. OK, I have a nontrivial or very user-specific problem.

b. I have recorded a lot of tracing data.

c. What should I do now?
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Motivation

a. OK, I have a nontrivial or very user-specific problem.

b. I have recorded a lot of tracing data.

c. What should I do now?

KernelShark
Not going to explain it here. See Steven Rostedt’s presentation at

OSS NA 2019.
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Stolen slide from Steven’s presentation at OSS NA 2019.
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Steven is doing:
* Switching to Marker A and clicking at the right event.
* Switching to Marker B and clicking at the right event.
* Getting the latency value that shows up in A B Delta.
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Steven is doing:
* Switching to Marker A and clicking at the right event.
* Switching to Marker B and clicking at the right event.
* Getting the latency value that shows up in A B Delta.

Now imagine doing this 10K times - Ugh!!!
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There must be a better way to get this job
done.

Imagine having something like this:
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#!/usr/bin/env python3
import ksharkpy as ks
...
ks.open_file('trace.dat')
data = ks.load_data()
data_size = ks.data_size(data)
...
for i in range(data_size):

if data['event'][i] == my_event_a:
action1

elif data['event'][i] == my_event_b:
action2

...
ks.close()
print('some summary of the results')
plot('some cool histograms or graphs for my presentation')
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NumPy

a. General purpose languages: C, Perl, Python ...

b. Numerical languages: Fortran, MATLAB, R, ...
* Written mostly for scientific numerical use.

Python + Scientific computing = NumPy
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NumPy is not built in to the Python language. It is a library.

It provides:
1. Powerful densely packed N-dimensional arrays of homogeneous type.

2. Large collection of high-level mathematical functions to operate on these arrays.

3. Tools for integrating C/C++ and Fortran code.

4. Complementary packages like:
a. Matplotlib - plotting package that provides MATLAB-like plotting functionality.
b. SciPy - library that adds functionalities for optimization, linear algebra, integration,

interpolation, FFT, signal and image processing.
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NumPy

* Many Numpy operations are implemented in C.

* In fact the Numpy arrays are very similar to the C arrays.

* Numpy array can be initialized from C-computed array
without data copying - COOL!!!
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NumPy

* Many Numpy operations are implemented in C.

* In fact the Numpy arrays are very similar to the C arrays.

* Numpy array can be initialized from C-computed array
without data copying - COOL!!!

Let’s use something that is already (almost ;-) available in KernelShark

libkshark.so
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Already available in KernelShark 1.0
Example of loading data using libkshark.so:

#include "libkshark.h"

int main(int argc, char **argv)
{

struct kshark_context *kshark_ctx = NULL;
struct kshark_entry **data = NULL;
int data_size;

kshark_instance(&kshark_ctx);
kshark_open(kshark_ctx, "trace.dat");
data_size = kshark_load_data_entries(kshark_ctx, &data);

for (r = 0; r < data_size; ++r) {
if (data[i]->event_id == my_event_a)

action1;
if (data[i]->event_id == my_event_b)

action1;
}
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...
/* Free the memory. */
for (r = 0; r < data_size; ++r)

free(data[r]);
free(data);

/* Close the file. */
kshark_close(kshark_ctx);

/* Close the session. */
kshark_free(kshark_ctx);

printf("some summary of the results")
/*
* Unfortunately, no simple way to show cool histograms/graphs here :(
*/

return 0;
}
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Summary

a. PoC NumPy interface for accessing Ftrace data in Python (via
NumPy arrays).

b. The implementation is just a tiny wrapper around libkshark
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Summary

a. PoC NumPy interface for accessing Ftrace data in Python (via
NumPy arrays).

b. The implementation is just a tiny wrapper around libkshark

Let’s see some examples.
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Example 1

Trying to reproduce the study done by
Prof. Dr. Wolfgang Mauerer and
Daniel Wagner.

See:
Cyclic Tests Unleashed: Large-Scale RT Analysis with

Jitterdebugger
Open Source Summit Japan 2019
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Example 1

Goal:
* Statistical estimate of the probability of exceeding the Worst

Case Execution Time (WCET)
* Remember that this is just an example demonstrating the PoC NumPy
interface for Ftrace data. The whole credit for the development
of the analysis itself goes to Wolfgang and Daniel.
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Example 1: Jitterdebugger - Idle machine
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Example 1: Jitterdebugger - Idle machine
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Example 1: Jitterdebugger

To make it more interesting, let’s do the test on a heavy loaded system.

Hackbench: stress test for the Linux kernel scheduler.
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Example 1: Jitterdebugger

Extreme Value Theory: Peak over Threshold (PoT) approach
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Example 1: Jitterdebugger

f(x) =
(
1 +

ξ(x − µ)

σ

)−(1+1/ξ)

Generalized Pareto distribution: A continuous probability
distributions. It is often used to model the tails of other distributions.
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Example 1: Jitterdebugger ∼2.4M cycles
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Example 1: Jitterdebugger ∼2.4M cycles
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Example 1: Jitterdebugger
Idle vs. Hackbench
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Example 1: Jitterdebugger

Let’s see some real code
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KernelShark session description file (JSON)
Allows loading predefined sessions.
{

"type": "kshark.config.session",
"Data": {

"type": "kshark.config.data",
"file": "trace-jitter-load.dat",
"time": 1567097989

},
"Model": {

"type": "kshark.config.model",
"range": [

5831246982148,
5831250072340

],
"bins": 1000

},
...
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"Markers": {
"type": "kshark.config.markers",
"markA": {

"isSet": true,
"row": 8467891

},
"markB": {

"isSet": true,
"row": 8469063

},
"Active": "A"

},
"CPUPlots": [

0
],
"TaskPlots": [

26456
],
"ViewTop": 8467886

}
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Example 1: Jitterdebugger
kernelshark -s max_lat.json
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Example 2: Page Faults

Demo
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