
Finding more DRAM
Mobile devices to Data centers

Suren Baghdasaryan, Shakeel Butt, Yu Zhao
Google

Why more DRAM?
● Mobile Devices

○ Application RAM demand keep increasing

○ Limited form factor

○ No way to add more physical RAM

● Datacenter
○ DRAM cost is a major factor of the total datacenter cost

○ Over-provision and under-utilized

○ Expensive ECC RAM

Current status

● Kill background apps (Android)

○ More cold starts -> slow and power hungry

● Overcommit memory (data centers)

○ Global memory pressure -> Direct reclaim -> No performance isolation

○ High refault cost due to slow storage devices

Solution: Proactively reclaim memory
● Reclaim unneeded memory proactively which is very cheap to refault.
● Approaches

○ Userspace driven proactive reclaim (Android)
■ Unneeded: memory of background apps
■ Cheap refaults: in-memory compression (zram)

○ Kernel driven proactive reclaim (Google datacenter kernel)
■ Unneeded: maintains idle age of whole memory
■ Cheaper: in-memory compression (zswap)

Android story
Cold starts are slow and power hungry

Can we keep more background apps alive while not affecting interactive ones?

Let’s shrink them!

Where all the memory is being used?

Userspace driven proactive reclaim

●
●

●
●

App cycle order: ABCABC ABCBA

Launch time No change 8% regression

of kills 50% less kills 19% more kills

notes
major faults for
file-mapped pages
increased by 6%

Experiment #1: proactively reclaim all pages

file LRU is very small
memory spikes result in more kills

proactively reclaiming file-backed pages is not a good idea.

How about deactivating file-backed pages them instead?

App cycle order: ABCABC ABCBA

Launch time 29% decrease 15% decrease

of kills 21% less kills 40% more kills

Experiment #2: reclaim anonymous and
deactivate file-backed pages

app-compaction is trying to allocate more memory while system is under
heavy memory pressure, making the situation worse and increasing lmk kills

userspace should avoid doing app-compaction while the system is under
heavy memory pressure

Results

Implementation: process_madvise()

Proactive reclaim for Data Centers
● Finding memory to reclaim proactively
● Reclaim memory

Google data center Memory Overcommit Model
● Replace part of DRAM with cheap slow memory (or far memory)
● Memory Provisioning

○ Quota request

○ Translates to

● Cheap slow memory is completely transparent to the users
○ Examples: ZSWAP, PMEM(slower+cheaper), swap (remote/local).

● Size of cheap slow memory == Idle Memory Estimation

X

Y Z

Actual DRAM Cheap slow memory

Idle Memory in across Google's Datacenters

Idle Memory Percentage
Idle Memory Access Rate %/min

2
m

in

8
hr

s

4
hr

s

2
hr

s

1
hr

4
m

in

6
m

in

8
m

in

10
 m

in ...

Time before a page becomes idle

Opportunity:
32% of memory usage is

idle

Challenge:
Frequent accesses to

idle memory

Existing mechanisms
● Why not kswapd

○ Reclaim based on watermarks
○ Aims to balance nodes
○ Too many complicated heuristics

● Page Idle Tracking
○ High CPU overhead
○ High memory overhead

for pfn in Machine:
 flag = read("/proc/kpageflags")
 cgroup = read("/proc/kpagecgroup")
 idle = read("/sys/kernel/mm/page_idle/bitmap")
 // Track idle pages for each page and their cgroups.

Our Approach
● kstaled (in-kernel page idle tracking)

○ No memory overhead (by storing age in page flags)
○ CPU overhead is similar to Page Idle Tracking

● kreclaimd
○ a kernel thread scanning all PFNs and reclaiming idle pages

● Per-memcg knobs
○ Idle age threshold for reclaiming anon and file pages
○ Page idle age histograms

kstaled CPU overhead
● CPU usage increases linearly with the RAM size

○ Spends 100% of a CPU for 512 GiB

● CPU usage increases linearly with the scan frequency
○ Spends 80% of a CPU for 60 sec cycle

● 50% time spent in rmap_walk

kstaled optimizations
● Remove rmap_walk from kstaled

○ Link all PMD pages into per-node linked list
○ Traverse PMD linked list to extract access bit
○ Traverse PFNs to age all the pages

● 3.5x CPU usage reduction by kstaled
○ Allows to scan larger systems or with higher frequency

● Remove PFN scanning from kreclaimd
○ kstaled passes idle pages to kreclaimd through a queue

● 1.5x CPU usage reduction by kreclaimd

Upstream concerns (during LSFMM'19)
● Bypassing existing LRUs
● High CPU cost
● Potential way forward

○ Decouple ageing from memory pressure
○ Use ages to sort LRUs
○ User controlled trigger for ageing and LRU sorting

Discussion points

