
The Path to DPDK Speeds for AF XDP

Magnus Karlsson and Björn Töpel
Intel, Inc.

Stockholm, Sweden
{magnus.karlsson,bjorn.topel}@intel.com

Abstract
AF XDP is a new socket type for raw frames introduced in Linux
4.18. The current code base offers throughput numbers around 20
Mpps per application core for 64-byte packets on a typical Broad-
well server, however, not much effort was spent on optimizations.
The focus of this paper is the performance optimizations needed for
AF XDP to get it to the performance levels of user-space network
driver packages such as DPDK.

In this paper, we present various optimizations that fall into two
broad categories: ones that are seamless to the application and ones
that requires additions to the uapi. With these optimizations, we
can reach our goal of close to 40 Mpps of throughput for 64-byte
packets for Rx and close to 70 Mpps for Tx. We end this paper
by presenting further possible optimizations that would hopefully
bring the Rx performance even higher.

Keywords Networking, Linux, AF XDP, XDP, packet processing,
zero-copy.

1. Introduction
In the beginning of August 2018, Linux 4.18 was released and
with that a new socket type was introduced called AF XDP. It is
designed to pass network traffic from the driver in the kernel up
to user space as fast and efficiently as possible, but still abiding
by all the usual robustness, isolation and security properties that
Linux provides. The performance target of AF XDP has always
been to be close to that of software packages with user space drivers
(full or partial) and/or zero-copy semantics such as DPDK [5],
Netmap [13], and PF RING [4]. The initial release of AF XDP in
4.18 targeted basic functionality and was not optimized for perfor-
mance. While it did deliver quite good throughput performance be-
tween 15 and 22 Mpps [1, 9–11] for the benchmarks in the sample
application, this is only around 50% or less of what the techniques
above can deliver. And this is not enough.

In this paper, we present a number of optimization to AF XDP
that takes the performance up to levels that are closer to or even
on par with what user-space driver techniques, such as DPDK, can
deliver. With these optimizations, more than double the throughput
performance: from 15 Mpps to 39 Mpps for Rx and from 25 Mpps
to 68 Mpps for Tx. We have limited the optimization proposals to
patch sets that we believe are acceptable to the networking com-
munity and non-intrusive to other component with the exception of
XDP [8] in some cases, as AF XDP uses XDP for its Rx data path.

To improve the performance of the Rx path, we propose three
sets of improvements:

• Optimize the XDP path and XDP driver implementation for the
post Spectre world with retpolines [14]. A performance drop of
nearly 50% for XDP has been reported [3] and as AF XDP uses
XDP, we suffer from this too. This patch set optimizes indirect

calls and switch statements in the data path so that they perform
better with retpolines.

• Introduce a new bind option in which the user does not have to
supply an XDP program and all traffic on the specified queue id
is sent up to the socket. This is realized in AF XDP by loading
a built-in XDP program and this program and the path leading
up to it can be optimized leading to substantial performance
improvements. Another benefit with this is that it improves ease
of use and adoption of AF XDP as an external XDP program is
no longer required the configuration path becomes simpler.

• Introduce an execution context in the XDP code instead of
using per-cpu state. While this improves performance on its
own, more importantly, it becomes possible to implement a
number of other performance improvements based on having
information more readily available.

To reach these performance levels on the Tx side, we propose
four new patch sets:

• Allow for multiple Tx sockets to be connected to one umem, so
that we can spread the Tx load over multiple Tx HW queues.
This patch is also required to support QoS and shaping features
in NICs, as this usually requires one queue per class. So this
feature is useful even without the performance improvements it
gives rise to.

• Extend the driver so that AF XDP gets its own HW queue. In
the upstream version, XDP and AF XDP shares one HW queue,
but by giving AF XDP its own queue we can make the Tx
completion code much more efficient.

• Change the batch size and descriptor queue sizes in the user
mode application. We have now tuned these to the new higher
throughput levels. But note, that they are kept the same for all
experiments, so we are not fine tuning anything.

• Introduce a new setsockopt that queries the device if the
NIC supports in-order completion and if so stops using the
completion queue and signals completions using the tail pointer
of the Tx ring instead. This cuts down the coherency traffic
between the user mode application on one core and the softirq
processing on another core and also gets rid of the backpressure
mechanism between the completion ring and the associated Tx
rings.

When AF XDP is executed, two cores are used: one for the user
mode application and one for the Rx/Tx processing in kernel space.
But with user-mode driver models, such as DPDK, the application
and driver is usually executed on the same core. They can do that
as both application and driver reside in the same program. This
can give rise to a large performance increase since it eliminates the
coherency traffic between the cores in the two core setup. If we
co-located the application and kernel driver to the same core with

1

AF XDP, there would be extensive mode and context switching
between the two and performance would be poor even though
we eliminated all coherency traffic. But there is a way to execute
a networking application with AF XDP using only a single core
and not have to do any context switching between the application
thread and any ksoftirqd thread, and that is by using busy poll() [7]
(POLL BUSY LOOP) in conjunction with AF XDP.

With busy poll(), the network driver is driven by the user space
application through the poll() syscall, in contrast to the normal case
where it is driven asynchronously by interrupts fired by the NIC.
The driver is executed in the same context as the application, thus
we do not require any context switching and the application and
driver can be executed on the same core. The added overhead is
the poll syscall and its associated mode switch into the kernel to
execute the driver. With busy poll we get 30 Mpps for Rx and 51
Mpps for Tx, compared to 39 Mpps and 68 Mpps with the normal
setup without busy poll. But note that the busy poll results are with
a single core while the other results are with two, so if you look are
what you get per core, the busy poll results are better.

In summary, the results look promising and make the perfor-
mance of AF XDP to be much closer to or even on par with user-
space driver models. We will try to get these patches into mainline
during the next 12 months. But even though we believe the perfor-
mance is now in the “good enough” territory for a number of in-
teresting applications using 40 Gbit/s devices, there are still many
more performance optimizations that could be done, and should be,
to cater for upcoming 100 Gbit/s and 200 Gbit/s network devices
and applications with even higher performance requirements.

This paper is outlined as follows. In section 2, we first present
the basics of AF XDP followed by the proposed optimizations
in section 3. Section 4 deals with the experimental methodology
followed by the experimental results in section 5. The paper is
ended (sections 6, 7 and 8) with some discussions and future work
and finally the conclusions.

2. AF XDP
AF XDP was designed to be able to deliver raw packets from
networking cards (NIC) to a user space process with a performance
comparable to solutions such as DPDK [5], Netmap [13], and
PF RING [4]. As AF XDP is built as an extension to XDP (eXpress
Data Path) [8], we need to explain some of its features first to see
how AF XDP builds on top of it.

XDP is a layer inside a Linux networking driver that for each
packet will execute a piece of validated code loaded from user-
space. This piece of code will then take actions on each packet.
These actions are (somewhat simplified) to drop the packet, to pass
it to the Linux networking stack or to transmit it out the same
(XDP TX) or another networking interface (XDP REDIRECT) as seen
in Figure 1. As the XDP program is executed in the driver, it can
take these actions very quickly. But as the program is limited in
size, there are only a limited set of actions that can be performed
in XDP and if more complex processing is need, the packet can
be passed on to the Linux stack and perhaps even up to user space
through one of the many socket types available such as raw sockets
(AF PACKET) or regular TCP/IP ones (AF INET).

AF XDP is a new socket type that permits raw packet data from
the NIC to be delivered straight to user space from XDP without
any copying and at significantly higher speeds than before [12].
It compares most closely with AF PACKET in that it delivers raw
packets to user space, however, it does so without sending a copy of
the packet through the networking stack as it is zero-copy. AF XDP
works in three different modes from slowest to fastest: skb mode
that works on any NIC, XDP copy mode that works on any NIC
with XDP support in the driver, and zero-copy mode that only
works on XDP enabled drivers that have been extended to support

XDP

Application

AF_XDP

Packets

Application

Linux Network Driver

AF_INET
AF_PACKET

Stack

Network card

Figure 1: XDP can process special user space applications in the
kernel driver. AF XDP is the mechanism for which XDP can di-
rectly redirect packets up to an application in user-space with zero-
copy semantics.

zero-copy mode. In this paper, we will only consider zero-copy
mode as it has the best performance.

The XDP program decides to which AF XDP socket the packet
should be sent to. The sockets are put in the new XSKMAP map
type and the XDP program can then pick which entry in this map a
packet should be sent to. As XDP is a highly flexible program, the
possible load balancing schemes for AF XDP are also very flexible.
Anything you can run in XDP is possibility. For better performance,
but less flexibility, you can use HW steering in the NIC instead. But
note that in the current code base, an XDP program is mandatory
even when you have HW steering.

From the application program point of view, all packets are
located in an application allocated memory area called umem as
seen in Figure 2. This is an area of equally sized chunks of memory
called packet buffers in which packets can reside. Associated with
a umem comes two rings: the fill ring and the completion ring. The
fill ring is used to transfer ownership of a packet buffer from user
space to the kernel, and conversely the completion buffer signals
that ownership of a packet buffer has been transferred from the
kernel to user space. The application indicates what packet buffer
to transfer ownership of by putting the address of that packet buffer
into the fill ring. Note, that this is the relative address from the start
of the packet buffer, not the actual virtual address. In the same way,
the kernel indicates ownership transfers in the completion ring by
entering the relative address of the desired packet buffer into it.

/* Rx/Tx descriptor */
struct xdp_desc {

__u64 addr;
__u32 len;
__u32 options;

};

/* Fill/Completion descriptor */
__u64 addr;

Listing 1: The descriptors of the Rx, Tx, Fill, and Completion rings.

Now we have a way to transfer ownership of packet buffers
without sending or receiving any data. To be able to send and
receive packet data, we need two more rings: the Rx ring and the
Tx ring. As seen in Listing 1, the descriptor format of these are
larger than the fill and completion rings. When a packet is received,

2

Umem consisting of equally sized packet buffers

Packets received

Packets to transmit

Give empty packet buffer to kernel

Tx has completed. Packet buffer belongs to application

Fill Ring (FR)

Completion Ring (CR)

One FR/CR pair per umemOne Rx/Tx ring pair per socket

RX Ring

TX Ring

Figure 2: The four rings of AF XDP and the umem containing all the packet buffers.

the kernel fills in a descriptor in the Rx ring, signifying what
packet buffer contains the packet data by setting addr to the relative
address of the packet buffer and indicating its length in len. There
is also an options field, but it is reserved for future extensions. By
checking the Rx ring, an application can find out if it has received a
packet. Conversely, if the application wants to send a packet, it puts
the same kind of information in the Tx ring, signaling to the kernel
that this packet should be transmitted. Note that the Rx and Tx rings
belong to the socket and each socket is bound to one umem which
has only one fill ring and one completion ring. But many sockets
can be bound to the same umem as long as they are bound to the
same network device and queue id. In that case, there will be many
Rx/Tx ring pairs.

A typical life-of-a-packet for AF XDP is the following. A
packet enters the NIC and the Linux driver picks it up, executes
the XDP program that decides if the packet should be sent to a
specific AF XDP socket. As AF XDP is executing in zero-copy
mode, the NIC has already put the packet in a packet buffer in the
umem area so the only thing the kernel has to do is fill in the Rx
descriptor to tell the application where this new packet resides and
the length of it. The application will then check the Rx ring if it has
received any packets. Once it has finished processing the packet, it
can return it to the kernel via the fill ring so that a new packet can
arrive in that packet buffer.

Tx works in a similar way but using the Tx and completion
rings. When the application wants to send a packet, it fills out the
next available descriptor in the Tx ring to point to the packet buffer
it wants to send. The kernel will then pick up this request and send it
to the hardware. Once the hardware has sent the packet, the kernel
signals that it has indeed sent the packet by returning the packet
buffer to the application via the completion ring.

Listing 2 shows the control path in pseudo-code. First we have
to create an AF XDP socket through the usual socket() call. Af-
ter that some memory is allocated for the umem and register it
through the setsockopt option XDP UMEM REG. The four rings are
then created with the setsockopts XDP RX RING, XDP TX RING,
XDP UMEM FILL RING, and XDP UMEM COMPLETION RING. The
application then has to ask the kernel for the structure of these
rings using the setsockopt XDP MAP OFFSETS. The reason for
this is that the ring structures are highly optimized to minimize
cache coherency traffic and might look different on various archi-
tectures. Now we have created all the structures we need and are
ready to start receiving and/or sending traffic from a network de-
vice and this is indicated by issuing a bind() call providing the
interface as well as the queue id of that interface from which we
would like to receive traffic from and/or transmit traffic on. This
concludes the control path of the set up.

The data path is simpler and is shown in Listing 3. It comes in
two main flavors: either a run-to-completion-model or by calling
poll() (or select(), epoll(), etc) to receive a packet. In the
run-to-completion model, the application just busy polls the Rx

sfd = socket(PF_XDP, SOCK_RAW, 0);

start_of_umem = malloc(size_of_umem);
mr.addr = start_of_umem;
mr.len = length_of_umem;
mr.chunk_size = 2048;
mr.headroom = headroom;
setsockopt(fd, SOL_XDP, XDP_UMEM_REG, &mr, sizeof(mr));

size = nr_descs_in_fill_queue;
ret = setsockopt(sfd, SOL_XDP, XDP_UMEM_FILL_RING,

&size, sizeof(size));
size = nr_descs_in_completion_queue;
ret = setsockopt(sfd, SOL_XDP, XDP_UMEM_COMPLETION_RING,

&size, sizeof(size));

size = nr_descs_in_rx_queue;
ret = setsockopt(sfd, SOL_XDP, XDP_RX_RING,

&size, sizeof(size));
size = nr_descs_in_tx_queue;
ret = setsockopt(sfd, SOL_XDP, XDP_TX_RING,

&size, sizeof(size));

/* Get the structure of the queues */
getsockopt(sfd, SOL_XDP, XDP_MMAP_OFFSETS, &off, &optlen);

fill_q = mmap(NULL, off.fr.desc * nr_descs_in_fill_queue *
sizeof(u64),
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_POPULATE,
sfd, XDP_UMEM_PGOFF_FILL_RING);

/* ...and so on for all four queues */

sxdp.sxdp_family = PF_XDP;
sxdp.sxdp_ifindex = if_nametoindex(interface_name);
sxdp.sxdp_queue_id = queue_id;
bind(sfd, (struct sockaddr *)&sxdp, sizeof(sxdp));

Listing 2: The control path of AF XDP in C-style pseudo-code.

ring in order to check if it has received a message. Once it receives
a batch, it goes on to process them. In the poll() model, it calls
poll when it has nothing to do, and when poll returns there is either
a packet to receive or a timeout has occurred.

For the Tx path shown in Listing 4, a descriptor for the packet to
be sent is put in the Tx ring. The kernel can pick this up to send it in
two ways: either through a sendmsg() syscall from the application
or through the transmit path NAPI context that might already be
running. If the Tx ring is full, the application can call poll() to wait
for the ring to have one or more free entries so that a packet can be
sent, or just poll continuously using the run-to-completion model.
The Tx code also needs to check the completion ring in order to be
able to reuse packet buffers once the kernel has sent them.

When an AF XDP program executes it usually consumes two
cores: one for the application and one for ksoftirqd executing the Rx
and Tx processing in a NAPI context as seen to the left in Figure 3.
If the driver performs Rx and Tx processing in different NAPI

3

void process_batch(void)
{

struct xdp_desc descs[BATCH_SIZE];

rcvd = xq_deq(rx, descs, BATCH_SIZE);
if (!rcvd)

return;

for (i = 0; i < rcvd; i++) {
char *pkt = xq_get_data(descs[i].addr);
process_packet(pkt, descs[i].len);

}

umem_fill_to_kernel(fq, descs, rcvd);
}

/* Run-to-completion model */
while (1) {

process_batch();
}

/* With poll() */
fds[0].fd = sfd;
fds[0].events = POLLIN;

while (1) {
ret = poll(fds, 1, 0);
if (ret <= 0)

continue;

if (fds[0].fd != sfd ||
!(fds[0].revents & POLLOUT))

continue;

process_batch();
}

Listing 3: The Rx data path of AF XDP in C-style pseudo-code.

Core 1 Core 2

Application Rx/Tx

Core 1

Application

Rx/Tx

Busy poll()

Run-to-completion

Figure 3: When run normally, AF XDP will consume two cores in
our experiments, but if busy poll() support is used both application
and Rx/Tx processing can run efficiently on a single core.

contexts, then they can execute on different cores for a total of three
cores. But this is not the case for the driver we are using in our
experimental evaluation. This is in contrast with DPDK and other
user-mode driver packages which can, with good performance,
execute both Rx/Tx processing and the application on a single core.
If we did this, the performance would drop by orders of magnitude
due to context switching. But there is a solution for this in Linux
and that is to use the busy poll() support (BUSY POLL LOOP) in
the kernel. With this feature, and the corresponding enablement in
the AF XDP code, only one core is needed as the application will
drive the NAPI context from the poll() syscall. With this busy poll()

static struct xdp_desc descs[BATCH_SIZE];

int send_batch(descs)
{

u64 comp_descs[BATCH_SIZE];

if (xq_nb_free(tx, BATCH_SIZE) >= BATCH_SIZE)
xq_enq(tx, descs, BATCH_SIZE) == 0);

else
return 0;

sendto(sfd, NULL, 0, MSG_DONTWAIT, NULL, 0);
rcvd = umem_complete_from_kernel(cq,

comp_descs,
BATCH_SIZE);

if (rcvd > 0)
process_completions(descs, rcvd);

return rcvd;
}

/* Run-to-completion model */
while (1) {

produce_packets(descs);
(void)send_batch();

}

/* With poll() */
fds[0].fd = sfd;
fds[0].events = POLLOUT;

while (1) {
produce_packets(descs);
nr_pkts_sent = send_batch();

if (nr_pkts_sent == 0) {
ret = poll(fds, 1, 0);

}
}

Listing 4: The Tx data path of AF XDP in C-style pseudo-code.

support, we can achieve a set up that is similar to DPDK, if desired.
We will evaluate this support in the results section.

AF XDP was introduced in Linux 4.18 and the source code can
be found in the net/xdp directory and the headers in include/net/
xdp sock.h. Note that some of the Rx path is in the XDP path
and that code is in net/core/filter.c. An example sample
program can be found in samples/bpf/xdpsock user.c and the
XDP program used to route the packets are in samples/bpf/
xdpsock kern.c.

3. Optimizations
This section presents the proposed optimizations that require some
changes to non AF XDP components and/or can generate architec-
tural design discussions. The optimizations that we think are trivial
are not mentioned here. Instead they will be mentioned briefly in
the results section.

3.1 Built-In XDP Program
In the current code base, it is mandatory to install an XDP program
that routes packets to one or more AF XDP sockets. Without this
program, the AF XDP sockets will not receive any traffic at all.
But when the application writer only wants to use the simplest
possible XDP program that sends all packets from a queue id to
a single socket bound to that queue id, we propose to provide a
built-in XDP program that the user does not have to load. This will
nearly half the amount of setup code required for an XDP program.
More importantly for this paper, if we provide this built-in XDP
program, we can implement a faster path through the XDP code up

4

to the AF XDP code that significantly improves performance for
this simple case.

We propose to add this support by adding a new flag to the
bind call called XDP ATTACH. When this flag is set, the AF XDP
code will load a built-in XDP program for you. This XDP program
behaves like an ordinary XDP program: you can dump it or replace
it with another XDP program on top of it. A change that we would
like to propose is that this built-in XDP program forms a hitch with
any regular, loaded XDP program. If an XDP program is loaded on
top of the built-in, the externally loaded program will replace the
built-in one. But if the externally loaded XDP program is unloaded,
then the built-in program will become active again. The reason for
this is that we think this is a good way to get it back. Another option
would have been to just have no XDP program running once the
external one is unloaded (as it is today), but in that case we would
have to kill all sockets on that interface and restart them to get traffic
back or provide a new XDP program with the basic functionality,
but that would defeat the whole purpose of this optimization.

We envision that at least one more built-in program would
be useful in the future and that would be an XDP program that
copies the packet and passes the copy to the Linux stack and the
original to user space. This could be used by applications that
today use AF PACKET such as tcpdump, wireshark and some DPI
applications.

3.2 Retpoline Optimizations
The retpoline mechanism that mitigates Spectre v2 type of attacks
can cut the performance of XDP by up to 50% [3]. As AF XDP is
based on XDP, it has a negative effect on it too, but only for the Rx
part as the Tx part does not use the XDP Tx code at this point in
time. Retpoline degrades the performance of indirect function calls,
so that is something we would like to avoid.

The built in XDP program that was introduced in the previous
section can be used to cut down the number of indirect function
calls in the XDP path as we now know exactly what path it will
take and that this program will not be replaced under our feet. We
also optimized the XDP path in the NIC driver by replacing switch
statements on the XDP actions with if statements, as the switch
statements generated jump tables with indirect function calls.

3.3 XDP Optimizations
One more optimization we tried on the XDP Rx path was to replace
the per-cpu state with an explicit context that is passed between
functions. While this makes the function calls longer (and uglier),
it provides a number of performance benefits. Retrieving data from
the stack allocated explicit state is cheap compared to using the per-
cpu state. This explicit context is also used to cut down the number
of look-ups in the XDP code, which also improves performance.

3.4 Multiple Tx Rings for one umem
In applications that use QoS and shaping support present in many
NICs, it is important to support multiple Tx sockets bound to
different queue ids but the same umem. Each one of these sockets
will then be treated differently by the NIC according to the QoS
and shaping set up. One example of such an area is the radio
access and core network of the mobile phone infrastructure. It is not
uncommon to have more than 10 classes of service in these systems
since a lot of the traffic goes over pay per use, shared transport
networks. We also also observed that spreading the Tx load over
multiple queues increased performance

This feature can be supported without any extensions or changes
to the uapi. Tx-only sockets can now be bound to a umem that has
other sockets and queue ids bound to it. But note that there can
still only be one Rx ring id associated with the umem. In order
to preserve the Single-Producer Single-Consumer semantics of the

Standard case In-Order Completion

TX Completion

head

tail

descriptors

head

tail

descriptors

TX Completion

head

tail

descriptors
head

tail

descriptors

Figure 4: Normally, the head pointer in the completion ring signals
that packet buffers have completed and which one have to be read
out from the completion ring itself. With the in-order optimization,
the completion ring can be skipped completely and the tail pointer
in the Tx ring will now signify completions in the same order as in
the Tx ring.

rings, the AF XDP code will ask the driver if it can support this
mutual exclusion by for example running the handling of the rings
in the same NAPI context or by some HW mechanism. If so, this is
left up to the driver. If the driver replies no, then the synchronization
will occur in the AF XDP code using a spinlock which is usually
more expensive, but will work for any driver.

3.5 In-Order Completion
The current uapi assumes that completions can be delivered out-
of-order by the underlying NIC and AF XDP code. That is the
reason why there is a completion ring with entries stating what
packet buffers that have completed. But what if the NIC can only
deliver packets in-order? In that case we actually do not need the
completion ring entries as they would be in the exact same order
as the entries in the Tx ring, as seen in Figure 4. We only need a
mechanism to signal that entries up to a certain point in the Tx ring
have completed, and that can be done with the tail pointer of the Tx
ring.

To support this feature, we introduce a new setsockopt called
XDP INORDER COMPLETION. When called it will return an error
code if in-order completion cannot be guaranteed by the driver and
0 if it can be supported. In that case, the application only needs to
check the Tx ring and can completely ignore the completion ring.
It does not even have to exist. From a performance perspective, not
having to populate or use the completion ring cuts the amount of
coherency traffic between the two cores. We can also stop running
the backpressure mechanism between the completion ring and the
Tx ring. This mechanism guarantees that there is always space in
the completion ring once we send a packet to the NIC, so that
we do not have to buffer anything in our code path. But without
the completion ring, there is no need for this, cutting down the
coherency traffic even further.

3.6 Busy Poll() for AF XDP
During the past couple of years, a number of people have added
busy poll() support [7] to poll(), epoll() and select(). In this mode,

5

the NAPI context associated with receiving and sending messages
to and from a socket can be driven by the syscall itself. This
happens if the NAPI context is not already running because it has
gotten for example an interrupt.

The main advantage of busy poll() is that we can run the appli-
cation and its associated Rx and Tx actions on a single core as de-
picted in Figure 3. This will eliminate the coherency traffic between
the two cores completely but the cost of this is the poll syscall itself
that we do not need to use in the run-to-completion model that uses
two cores.

4. Experimental Methodology
We run on a dual socket system with two Broadwell E5-2660 @
2.7 GHz with hyper-threading turned off. Each socket has 14 cores
which gives a total of 28. The memory is DDR4 @ 2133 MT/s
(1067 MHz) and the size of each DIMM is 8192MB and with 8 of
those DIMMs in the system we have 64 GB of total memory. We
run Linux version v4.19-rc6-2008-g438363c0feb8 from the bpf-
next tree with all Meltdown and Spectre mitigations turned on. The
distribution we use is Ubuntu 18.04.1 LTS, and the compiler used
is gcc version 7.3.0. We use two Intel I40E 40Gbit/s networking
cards version 2.3.2-k with firmware version 6.01. Only a single
interface/port is used on the card but we use two queues on each
interface (in all experiments except the first one in the Tx section).
Both NICs are served by the same core. The BIOS is from Intel
and has version number GRRFCRB1.86B.0261.R01.1507240936
and the microcode has signature 0x000406f0. Power save has been
turned off to provide more stable performance numbers. All the
four types of HW prefetchers are turned on. Packets are generated
by commercial packet generator HW that is generating 64-byte
packets at full 40 Gbit/s line rate to each NIC.

The micro-benchmarks used in this study are shown in Table
1. All of them are part of the xdpsock user.c sample application.
Rxdrop and txpush does not touch packet data while l2fwd touches
every packet by swapping the MAC addresses. Each benchmark
runs for 60 seconds and each application process executes on its
own core with cpu affinity. All processes are run on the same socket
as the NIC is plugged into.

Benchmark Description
rxdrop RX only without packet data touch
txpush TX only without packet data touch
l2fwd RX + swap MAC headers + TX

Table 1: The micro-benchmarks used in this paper.

For the DPDK experiments, we use the same system and kernel
as for the AF XDP experiments. We use DPDK version 18.08
and compile it using the standard supplied options and that is
without any retpoline support. We use both vectorized and scalar
drivers in the experiments. The same two NICs are used with
two queues active on a single port per NIC. We use the DPDK
I40E PMD with 32-byte descriptors as that is what is used in
the Linux driver, however both DPDK and AF XDP will get a
performance boost (2% for DPDK) by moving to 16-byte de-
scriptors. But this has not been implemented in the Linux driver.
The testpmd application is used for all benchmarks and the com-
mand line is testpmd -l 14-15 -n 4 -w 0000:81:00.1 -w
0000:86:00.0 -- -i --portmask=0x3 --rxd=512
--txd=512 --txq=1 --rxq=1 and the prompts that follows for
the different applications can be found in Table 2. We modified
the txonly code to use pregenerated packets to improve its perfor-

mance and to make it comparable to the AF XDP txonly that also
uses pregenerated packets1.

Benchmark Testpmd Command Line
rxdrop set fwd rxonly
txpush set fwd txonly
l2fwd set fwd macswap

Table 2: The DPDK testpmd command lines used for the bench-
marks in this paper.

5. Experimental Results
This section starts by first reporting the results of the Rx optimiza-
tions in section 5.1, followed by the Tx optimizations in section
5.2. We then put all the optimizations together when the results for
the busy poll() implementation are reported in section 5.3. In sec-
tion 5.4, we show how the optimizations improve the performance
of the XDP path and finally section 5.5 compares AF XDP’s per-
formance to DPDK’s.

5.1 RX Results
Figure 5 shows the results of the proposed Rx optimizations.
“Baseline” refers to the performance of the code without any
of our optimizations in it, what you would get if you would
compile the latest bpf-next or net-next tree. “XDP ATTACH”
introduces the XDP ATTACH option and by doing that we can
use a simpler built-in XDP program that gives rise to faster
xdp do redirect, xdp do flush map and a specialized version
of bpf redirect map called bpf xsk redirect that improves
performance. The next two categories are self explanatory, but the
“various driver opts” inlines a number of functions in the data path
of the driver, restructures struct to be more cache friendly, increases
the tail bump interval from 32 to 128 and other optimizations. The
“Explcit context in XDP path” was explained in it own section.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

rxdrop

M
pp

s

Baseline
XDP ATTACH

Remove indirect call in XDP path
Replace switch in driver

Various driver opts
Explicit context in XDP path

15.1 17.1
23.4

31.5
36.8 39.3

Figure 5: Results for rxdrop and the various Rx optimizations.

As can be seen the performance after all the optimizations is
increased by 131% from 15.1 Mpps to 39.3 Mpps. This is mainly
due to the shorter code path that can be gained by the built-in XDP
program and especially by the retpoline optimizations.

1 Performance results are based on testing as of October 17, 2018 and
may not reflect all publicly available security updates. See configuration
disclosure for details. No product can be absolutely secure.

6

5.2 TX Results
Figure 6 shows the results of the proposed Tx optimizations. “Base-
line” is the same build as the one for Rx, while “Batch size and
descriptor changes” is when the batch size of the application is in-
creased from 16 to 64 and the ring sizes are increased from 1024 to
2048. The other ones should be self explanatory and/or covered in
the optimization section.

 0

 20

 40

 60

 80

 100

 120

 140

txpush

M
pp

s

Baseline
Multiple Tx queues

Batch size and descriptor ring changes
Optimized cleanup not shared with XDP

In order completion

25.3 25.9

54.1 58.0
68.0

Figure 6: Results for txpush and the various Tx optimizations.

From the figure, we can see that the performance is increased
by 169% or from 25.3 Mpps to 68.0 Mpps with all the Tx opti-
mizations. (Note that we can get more than 59.5 Mpps because we
are using two 40 Gbit/s NIC cards.) The highest performance gain
is found by just tuning the sample application slightly. We had not
given this much love before, but by just increasing the batch size
and ring sizes we could gain a substantial performance increase.
Without the prior optimizations, increasing these would not have
matered that much. It is the cumulative effect of all three optimiza-
tions that is seen here. The in-order completion mode can increase
the throughput even more up to 68.0 Mpps.

5.3 Combined Results and Busy Poll()
Figure 7 shows a comparison between the run-to-completion model
that we have used in the experiments so far and using the poll()
syscall in the busy poll() mode. The main difference between these
modes is that the first mode uses two cores, one for the application
and one for Rx/Tx processing, while the busy poll() mode uses only
one core driving both the application and all Rx/Tx processing in
a manner much more similar to a typical DPDK setup. All the Rx
and Tx optimizations from the previous sections are used in these
measurements.

As can be seen from the results, busy poll() decreases the per-
formance by between 20% and 25%. But note that busy poll() only
uses a single core instead of two (one fully loaded Rx/Tx core and
a very lightly loaded application core), so on a per core basis the
performance of busy poll() is between 50% and 59% better than the
run-to-completion model. This is mainly due to the fact that we do
not have to communicate any data between cores since it is all local
to a single core and this eliminates any coherency traffic leading to
better performance. The performance drawback with busy poll() is
that incurrs a system call overhead for the poll() call itself. This
is something that the run-to-completion model avoids as it directly
polls the relevant rings without any system call. But it is good to be
able to pick between both these models. There are workloads and
systems where one would be preferable to the other. E.g., for multi-
stage pipelined workloads, using several cores for just application
processing makes sense. But a workload for which the packets can

 0

 10

 20

 30

 40

 50

 60

 70

 80

rxdrop txpush l2fwd

M
pp

s

Run-to-completion
poll()

39.3

30.4

68.0

51.1

22.4
16.4

Figure 7: Results with and without busy poll(). Note that run-to-
completion uses two cores but busy poll() only one.

be easily distributed between cores by a NIC, the busy poll() model
is usually a better fit.

5.4 XDP Results
Some of the performance improvements we made to AF XDP
are also beneficial to the regular XDP path. Table 3 shows the
performance increase of the xdp drop micro-benchmark found in
the samples/bpf directory in Linux. This benchmark when run
with the notouch option is the same as rxdrop but implemented in
XDP. As can be seen from the table, the throughput is increased by
23%. So our optimizations of AF XDP that touches the XDP path
has not decreased the performance. On the contrary.

Benchmark Before After optimizations
xdp drop 19.9 24.5

Table 3: The performance improvement to XDP as a result of the
AF XDP targeted optimizations in this paper.

5.5 Comparison with DPDK
The benchmark for highly optimized drivers and SW interfaces for
packet processing is today DPDK [5]. It is frequently used together
with switching software to show really high throughput numbers in
the range of 1 Tbit/s worth of switching [6]. The question is then,
how does AF XDP with these new set of optimizations compare to
DPDK?

Figure 8 shows the performance of AF XDP and DPDK for
three benchmarks: rxdrop, txpush and l2fwd. For DPDK we have
used both scalar drivers (not using any vector or floating point
instructions) and vectorized drivers. As far as we know, there are
no vectorized networking drivers available in Linux at the time of
writing.

In summary, when we compare the busy poll() mode, that uses
the same amount of cores as DPDK, to DPDK with scalar drivers
then AF XDP is only around half the performance of DPDK. The
run-to-completion mode fares better and is even faster than DPDK
(running a scalar driver) for Tx but around 30% slower for Rx. So
we need to put more effort in optimizing the Rx path and the busy
poll() path. More interestingly, when we actually start to touch the
data in l2fwd, which is the normal case for pretty much all non toy-
applications, the difference between AF XDP and DPDK becomes
much smaller. The run-to-completion mode of AF XDP is faster
than the scalar DPDK driver but slower than the vectorized one
and busy poll() is only 16% slower when both DPDK and AF XDP

7

 0

 20

 40

 60

 80

 100

 120

rxdrop txpush l2fwd

M
pp

s

AF XDP Run-to-completion
AF XDP poll()

DPDK scalar driver
DPDK vectorized driver

39.3
30.4

52.8

73.0
68.0

51.1

64.2
73.7

22.4
16.4 20.0 22.5

Figure 8: Results comparing AF XDP with DPDK for three micro benchmarks.

are running scalar drivers. The more we actually use the data, the
less the performance difference will be. It would be interesting to
evaluate the performance difference for some real workloads and
see how they compare and where we need to focus our efforts. What
we have here are just micro-benchmarks.

We can also see from the results that vectorized drivers do
offer a performance boost, between 12% and 38% for the DPDK
micro-benchmarks used in this paper. The question is how much
performance increase this translates to for realistic workloads and
if this increase offsets the lowered maintainability and flexibility of
such drivers.

6. Future Work and Discussion
It is clear from the initial user feedback we have gotten that the
setup and data plane usage of AF XDP need to become simpler to
lower the bar of entry. Currently, it seems that users are just copying
the code from the sample program, which is not a good solution
in the mid to long term. The XSK ATTACH optimization presented
in this paper is the way we propose to facilitate the setup of an
AF XDP socket. But to make the data path simpler to use, we need
something else. We would like to propose to add a lean and mean
access library for AF XDP sockets to libbpf, in the same manner
as XDP has added helper functions to facilitate adoption of XDP
programs. The library could present a libc interface (or at least libc-
like) to the user with familiar functions such as recv, recvmsg,
and sendmsg. This would go well with the control plane usage
of pure libc functions and the already existing usage of poll,
select, read, write and sendto in the data plane. The library
could also be used to implement a really simple DPDK PMD for
AF XDP.

It would be beneficial to add hugepage support to AF XDP,
not only because it will cut down the TLB miss rate, but more so
because it can cut down the communication rate on the fill ring. In
the fill ring we indicate which page buffers should be returned by
indicating what chunk it belongs to. In the current implementation
the chunk size can be 2K or 4K, but with huge pages this could
be for example 64K. So indicating the ownership transfer of 32
consecutive 2K page buffers to the kernel can be accomplished
with just one write to the fill ring when the chunk size is 64K,

instead of 32 writes with a chunk size of 2K. This should improve
performance.

Another avenue worth pursuing is to optimize the driver for
“XDP first”. Currently we use the standard skb path, but there are
many things in that path that cannot happen because they are not
supported in XDP or AF XDP. We could, for example, register a
special NAPI handler that only deals with XDP Rx and/or Tx rings
and provide a slim and highly optimized path from there. Another
example would be to go to 16-byte descriptors for those queues as
these can be handled faster by the I40E NIC and also consumes less
memory which could lead to better performance.

One idea that we had for this paper, but had no time to imple-
ment, was to batch the XDP processing so that a batch of packets is
first received, then that batch is processed in the XDP program and
their corresponding actions recorded, then after this the actions are
performed as a batch. When we implemented AF PACKET V4,
we experimented with this and it provided better throughput as it
used the instruction cache more efficiently. But we have not had
the time to implement this in the latest Linux kernel with AF XDP.
Jesper Dangaard Brouer has also posted interesting suggestions [2]
on how to batch more in XDP.

We would like to encourage users out there to try out AF XDP
on real commercial workloads to see how it performs instead of our
micro-benchmarks that we have gotten. Please report any perfor-
mance problems, bugs and improvement suggestions on the mail-
ing list so that we can address them.

7. Conclusions
This paper presented a number of possible performance optimiza-
tions to both the Rx and Tx paths of AF XDP. Most of them are
transparent to the user with the exception of the XSK ATTACH bind
option and the XSK INORDER COMPLETION setsockopt extension
that require application changes to take advantage of them.

The performance evaluation shows that the performance com-
pared to the current baseline in bpf-next and net-next is improved
by 160% from 15.1 Mpps to 39.3 Mpps for Rx and by 169% or
from 25.3 Mpps to 68.0 Mpps for Tx. We also evaluate the support
of the busy poll() feature in conjunction with AF XDP and while
it reduces the total performance by between 20% and 25%, it also

8

cuts down the number of used cores to one. Measured on a per core
basis, busy poll() actually increases performance with another 50%
compared to the optimized Rx and Tx results. We also compare
AF XDP against DPDK and while there is still substantial work
required on the Rx side to reach the same performance levels, Tx
and an application that actually touches the data, l2fwd, offers com-
parable performance to DPDK when we run in run-to-completion
mode.

8. Acknowledgments
We would really like to thank the reviewers on the mailing list and
all the people that have taken AF XDP for a spin and reported
issues, bugs and improvement suggestions: Ilias Apalodimas,
Daniel Borkmann, Jesper Dangaard Brouer, Willem De Bruijn,
Eric Dumazet, Alexander Duyck, Mykyta Iziumtsev, Jakub Kicin-
ski, Song Liu, David S. Miller, Pavel Odintsov, Sridhar Samudrala,
Yonghong Song, Alexei Starovoitov, William Tu, Anil Vasudevan,
Jingjing Wu, and Qi Zhang. We owe you one.

References
[1] J. Corbet. Accelerating networking with AF XDP. URL https:

//lwn.net/Articles/750845/, 2018.
[2] J. Dangaard Brouer. Focusing the XDP project. URL https://

lists.openwall.net/netdev/2017/02/20/29, 2018.
[3] J. Dangaard Brouer. XDP performance regression due to CON-

FIG RETPOLINE Spectre V2. URL https://lkml.org/lkml/
2018/4/12/285, 2018.

[4] L. Deri. Improving passive packet capture: Beyond device polling. In
International System Administration and Network Engineering Con-
ference (SANE), Amsterdam, The Netherlands, 2004.

[5] DPDK Community. DPDK - DataPlane Development Kit. URL
http://www.dpdk.org/, 2018.

[6] J. Duman. FD.io Doubles Packet Throughput Performance to Terabit
Levels. URL https://fd.io/2017/07/fdio-doubles-packet-
throughput-performance-terabit-levels/, 2017.

[7] E. Dumazet. BUSY POLLING: past, present, future. In Netdev Con-
ference 2.1, 2017. URL https://netdevconf.org/2.1/slides/
apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf.

[8] T. Høiland-Jørgensen, J. Dangaard Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller. The eXpress Data
Path: Fast Programmable Packet Processing in the Operating System
Kernel. In Proceedings of the ACM CoNEXT Conference, 2018. URL
https://github.com/tohojo/xdp-paper/blob/master/xdp-
the-express-data-path.pdf.

[9] M. Karlsson and B. Töpel. The AF XDP patch set. URL https:
//lwn.net/Articles/750293/, 2018.

[10] M. Karlsson and B. Töpel. AF XDP zero-copy support for I40E. URL
https://patchwork.ozlabs.org/cover/962906/, 2018.

[11] M. Karlsson and B. Töpel. Zero-copy support for AF XDP. URL
https://lwn.net/Articles/756549/, 2018.

[12] M. Karlsson, B. Töpel, and J. Fastabend. AF PACKET V4
and PACKET ZEROCOPY. In Netdev Conference 2.2, 2017.
URL https://www.netdevconf.org/2.2/papers/karlsson-
afpacket-talk.pdf.

[13] L. Rizzo. netmap: A novel framework for fast packet i/o. In
2012 USENIX Annual Technical Conference (USENIX ATC 12),
pages 101–112, Boston, MA, 2012. USENIX Association. ISBN
978-931971-93-5. URL https://www.usenix.org/conference/
atc12/technical-sessions/presentation/rizzo.

[14] P. Turner. Retpoline: a software construct for preventing branch-target-
injection. URL https://support.google.com/faqs/answer/
7625886, 2018.

9

https://lwn.net/Articles/750845/
https://lwn.net/Articles/750845/
https://lists.openwall.net/netdev/2017/02/20/29
https://lists.openwall.net/netdev/2017/02/20/29
https://lkml.org/lkml/2018/4/12/285
https://lkml.org/lkml/2018/4/12/285
http://www.dpdk.org/
https://fd.io/2017/07/fdio-doubles-packet-throughput-performance-terabit-levels/
https://fd.io/2017/07/fdio-doubles-packet-throughput-performance-terabit-levels/
https://netdevconf.org/2.1/slides/apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf
https://netdevconf.org/2.1/slides/apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf
https://github.com/tohojo/xdp-paper/blob/master/xdp-the-express-data-path.pdf
https://github.com/tohojo/xdp-paper/blob/master/xdp-the-express-data-path.pdf
https://lwn.net/Articles/750293/
https://lwn.net/Articles/750293/
https://patchwork.ozlabs.org/cover/962906/
https://lwn.net/Articles/756549/
https://www.netdevconf.org/2.2/papers/karlsson-afpacket-talk.pdf
https://www.netdevconf.org/2.2/papers/karlsson-afpacket-talk.pdf
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

	Introduction
	AF_XDP
	Optimizations
	Built-In XDP Program
	Retpoline Optimizations
	XDP Optimizations
	Multiple Tx Rings for one umem
	In-Order Completion
	Busy Poll() for AF_XDP

	Experimental Methodology
	Experimental Results
	RX Results
	TX Results
	Combined Results and Busy Poll()
	XDP Results
	Comparison with DPDK

	Future Work and Discussion
	Conclusions
	Acknowledgments

