ERSPAN Support for Linux

William Tu
VMware Inc.

Greg Rose
VMware Inc.

u9012063 @gmail.com gvrose8192@gmail.com

Abstract

Port mirroring is one of the most common network trou-
bleshooting techiques. Switch Port Analyzer, SPAN, allows
a user to send a copy of the monitored traffic to a local or re-
mote device using a sniffer or packet analyzer. Encapsulated
Remote SPAN, ERSPAN, extends the basic port mirroring
capability from Layer 2 to Layer 3, allowing the mirrored
traffic to be sent through an IP network.

ERSPAN was added to Linux kernel in 4.14 for [Pv4 and
4.16 for IPv6. In this paper, we demonstrate three ways to
use the ERSPAN protocol. First, using iproute2 to create na-
tive tunnel net device. Traffic sent to the net device will be
encapsulated with the protocol header accordingly and traf-
fic matching the protocol configuration will be received from
the net device. Second, for eBPF users, using iproute2 to
create metadata-mode ERSPAN tunnel and attach the tun-
nel metadata implementation in eBPF code. Finally, Open
vSwitch users can use netlink interface to create a switch and
programmatically parse, lookup, and forward the ERSPAN
packets based on flows installed from the userspace.

1. Introduction

Port mirroring is one of the most common network trou-
bleshooting techniques. SPAN (Switch Port Analyzer) al-
lows a user to send a copy of the monitored traffic to a
local or remote device using a sniffer or packet analyzer.
RSPAN is similar, but sends and received traffic on a VLAN.
ERSPAN extends the port mirroring capability from Layer
2 to Layer 3, allowing the mirrored traffic to be encapsu-
lated in an extension of the GRE (Generic Routing Encap-
sulation) protocol and sent through an IP network. In addi-
tion, ERSPAN carries configurable metadatas (e.g., session
ID, timestamps), so that the packet analyzer has better un-
derstanding of the packets.

ERSPAN for IPv4 was added into Linux kernel in 4.14,
and for IPv6 in 4.16. The implementation includes both
transmission and reception and is based on the existing
ip-gre and ip6_gre kernel modules. As a result, Linux today
can act as an ERSPAN traffic source sending the ERSPAN
mirrored traffic to the remote host, or an ERSPAN destina-
tion which receives and parses the ERSPAN packets gener-
ated from Cisco or other ERSPAN-capable switches.

Linux Linux

O + }
| Physical | | VML VM2 ... | | linux |
| Machines | | | | | | netdevs |
o + I + | | | |
| links | | Open vSwitch | | | ERSPAN |

| | A + | | netdev |

+=| | = +

|Cisco switchl|

|
| ERSPAN
|| ERSPAN tunnel unnel | tunnel
Il |
Y kiiiaiainiiaiaiaiieiaiaiaiiadaietaieteiaiettetatetetatatodetntatatetetetadatoted \ Fom————— +
{ Layer 3 IPv4, Ipv6 network } === |Trafficl
ANkttt ittt / |Sniffer|
e +

Figure 1: Overview of the ERSPAN tunnel use cases. ERSPAN
tunnels can be created from a sniffer machine to Cisco switches,
a Linux machine with multiple VMs, or simply a Linux machine.

We have added both the native tunnel support and metadata-
mode tunnel support. we demonstrate three ways to use the
ERSPAN protocol. First, for Linux users, using iproute2 to
create native tunnel net device. Traffic sent to the net device
will be encapsulated with the protocol header accordingly
and traffic matching the protocol configuration will be re-
ceived from the net device. Second, for eBPF users, using
iproute2 to create metadata-mode ERSPAN tunnel. With
eBPF TC hook and eBPF tunnel helper functions, users can
read/write ERSPAN protocols fields in finer granularity. Fi-
nally, for Open vSwitch users, using the netlink interface
to create a switch and programmatically parse, lookup, and
forward the ERSPAN packets based on flows installed from
the userspace.

ERSPAN is popular in the followin use cases [3]:

® Debugging network issues by tracking the control and
data frames.

e Monitoring Voice-over-IP, VoIP, packets for delay and
jitter analysis
e Monitoring network transactions for latency analysis

e Monitoring network traffic for anomaly detection

Figure 1 shows an example setup of ERSPAN tunnels. A
network administrator first sets up multiple source network
devices and filters the interested portion of the traffic he/she
wants to inspect. One case on the left-most is to create the
ERSPAN tunnel between the Cisco switch and a traffic snif-

> <---- inner ---- ...

Ether | IP | GRE | ERSPAN | Ether | IP | ...

Figure 2: An example of mirrored packet with outer header contain-
ing the GRE and ERSPAN header, followed by the inner Ethernet
frame.

fer. Depending on the features in the Cisco switch, differ-
ent filters can be applied to the traffic. In the middle of the
figure, for multiple virtual machines running inside a Linux
box, the virtual switch forwarding the packet between vir-
tual and physical networks can also create ERSPAN tunnels
between the software switch and remote traffic sniffer. Here,
Open vSwitch [7] is an example capable of creating filters
and forwarding packets to ERSPAN tunnels. More detailed
configurations of Open vSwitch are described in later sec-
tion.

The ERSPAN tunnel is represented in Linux as a net-
dev and configured through iproute2 [4]. Any packet that
is placed into its send queue will be encapsulated based
on the netdev’s ERSPAN configuration. As a result on the
right-most, any other linux netdev which wants to create a
ERSPAN mirrored packet simply makes a copy and forwards
to the ERSPAN netdev. For example, a physical netdev can
use linux TC [8] with mirror action to copy a packet to the
erspan tunnel.

Mirrored traffic arriving at the sniffer machine needs to be
able to extract and restore the original monitored frame. To
differentiate the three use cases, the administrator can create
three ERSPAN session IDs, a configuration parameter for
grouping the mirrored traffic. For Linux users, an ERSPAN
tunnel can also be used at the sniffer side. Any packet ar-
riving at the ERSPAN tunnel netdev’s receive queue will be
decapsulated. Tools such as Wireshark [10, 11] can be used
to inspect the mirrored packet.

2. ERSPAN Protocol Implementation

The ERSPAN protocol was developed by Cisco and its spec-
ification is published at IETF draft [3]. Figure 2 shows an
example of ERSPAN encapsulated packet, with outer header
consisting of Ethernet header, following by IPv4/IPv6 header,
following by a fixed 8-byte GRE header, and following by
ERSPAN header. After the ERSPAN header, the inner frame
is followed so that the ERSPAN receiver or packet sniffer
can extract the original frame. The use of the IP protocol as
part of the outer header is important because it makes the
mirrored traffic routable across any IP network.

ERSPAN protocol has two versions; version 1 (type II)
and version 2 (type III). ERSPAN protocol is layered on
top of the GRE (Generic Routing Encapsulation) protocol,
with GRE’s sequence number enabled. For ERSPAN type
II, the GRE’s next protocol type is 0x88BE with 8-byte
ERSPAN header size, and for ERSPAN type III, the GRE’s
next protocol type is 0x22EB with 12-byte ERSPAN header
size, if no optional subheader enabled.

In this section we describe the basic ERSPAN proto-
col header format along with its implementation in the
Linux kernel. For IPv4/IPv6, the implementation is under
net/ipv4/ip_gre.c and net/ipv6/ip6_gre.c. Also a userspace
API header, include/uapi/linux/erspan.h is added for metadata-
mode tunnel users.

2.1 Native vs Metadata-Mode Tunnel

There are two tunnel type implementations in Linux ker-
nel: native tunnel and metadata-mode tunnel [5]. Native tun-
nel is the basic way of creating tunnels in Linux. A tun-
nel netdev is created with per tunnel-specific configuration,
tied together with the netdev. For example, creating a GRE
tunnel with key and sequence number can be done by: ip
link add dev grel23 type gretap local 1.1.1.1
remote 2.2.2.2 seq key Oxfb. As aresult, N different
tunnel configurations require creating N number of netdevs.
In certain cases such as network virtualization, this is not
scalable because every host in the network creates mutiple
tunnels with different configurations to every other hosts [6].
Metadata-mode tunnel, or called light-weight tunnel, is
designed for solving the limitation. The fundamental idea is
that only one netdev per tunnel type is required to represent
multiple tunnels. This means that the tunnel configuration
of a particular type of the tunnel must be passed to the tun-
nel netdev in order to encapsulate the packet. For example,
creating a metadata-mode tunnel can be done by: ip link
add dev type gretap external. Note that there is no
configuration parameters assigned at device creation time.
The tunnel configuration is set-up per-packet at run-time.
Currently there are two ways of using metadata-mode tun-
nel, one through OVS and the other through eBPF [1]. We
implement both the native mode and metadata-mode [13] for
ERSPAN type II and type III. More examples of using native
and metadata-mode tunnel are upstreamed under tools/test-
ing/selftest/bpf/{ test_tunnel.sh, test_tunnel_kern.c}.

2.2 GRE

ERSPAN follows a fixed 8-byte GRE header with the below
value.

GRE header for ERSPAN encapsulation (8 octets [34:41]) -- 8 bytes
0 1 2 3
01234567890123456789012345678901

Note that only the sequence number bit in the FLAGS
fields is set. Sequence number is useful at the snifffer site
where the mirrored traffic arrives out-of-the-order. Depend-
ing on the protocol type, ERSPAN type II or type III is fol-
lowed next.

Implementation: Before introducing ERSPAN, Linux
kernel already supports IPv4 GRE native and metadata
mode. So our effort is to purely add ERSPAN implemen-
tation on top of existing GRE code base [12]. One minor

limitation is that existing metadata-mode does not support
GRE sequence number, we’ve upstreamed the implementa-
tion [14].

For IPv6, there is no metadata mode feature before 4.16.
We first implemented the metadata-mode support for IPv6
GRE [17], then upstreamed the ERSPAN feature [15, 16].

2.3 ERSPAN Type II

ERSPAN type II has 8-byte feature header with the follow-
ing format.
ERSPAN Version 1 (Type II) header (8 octets [42:49])

0 1 2 3
01234567890123456789012345678901

The ERSPAN Type II encapsulation adds to the original
frame a composite header comprising: 14-byte (802.3) + 20-
byte (IP) + 8-byte (GRE) + 8-byte (ERSPAN), in addition
to a trailing 4-byte Ethernet CRC. The VLAN field shows
the original VLAN of the frame, the COS means Class of
Service of the monitored frame. En field shows the trunk
encapsulation type associated with the ERSPAN source port.
‘When the mirrored frame is truncated, T bit is set to indicate
the frame has been truncated. Session ID is a 10-bit field as
an identification of each ERSPAN mirroring session. Index
is a platform-depedent field for specifying port number and
direction.

Implementation: Type II introduces two new config-
urable fields to netlink API; the Session ID and Index. Ses-
sion ID is configured by users through iproute2 tool with
netlink API. Since ERSPAN does not use the GRE Key field,
we re-use the IFLA_GRE_IKEY, IFLA_GRE_OKEY as the ses-
sion ID field. Index is also configurable by users through
iproute2. The COS field and VLAN field are extracted from
the original frame and set properly. The truncate bit is de-
tected by comparing the the mirrored frame’s skb->1len and
the length its IP header reports.

2.4 ERSPAN Type III

ERSPAN type III has 12-byte feature header with the fol-
lowing format.

ERSPAN Version 2 (Type III) header (12 octets [42:49])
(] 1 2 3
01234567890123456789012345678901

Type III introduces more flexible composite header to
support additional fields. BSO, Bad/Short/Oversized, allows
the sniffer to identify whether the frame payload has CRC er-
ror, too short, or too large [18]. Timestamp is a 4-byte field
and can be configured with different granularities (100 mi-
croseconds, 100 nanosecond, or IEEE1588) at the Gra field.

session 10 Linux, session 20 Linux, session 30

O + } '
| Physical | | M1 VM2 ... | | linux
| Machines | | 10.1.1.3 | | | netdev,ethl |
oo + | e + | | | |
| links | | Open vSwitch | | | ERSPAN 10.1.1.4|
| 10.1.1.2 | = + | | netdev |
+ + + I + +=| | +
|Cisco switchl I I
oo + || ERSPAN || ERSPAN
|| ERSPAN tunnel |l tunnel || tunnel
Il (192.168.1.2) |l (192.168.1.3) |l (192.168.1.4)
Ytiaiiaiaiaiaiieiainiieiaiatuteteieietateteiaintetetedettetetedettetetaintetededated \ R +
{ Layer 3 IPv4, Ipv6 network } === |Traffic|
A ittt iatietietaiatai ettt / |Sniffer|
192.168.1.% to————— +
192.168.1.1

Figure 3: Example of creating three ERSPAN monitoring sessions,
10,20, 30, in a 10.1.1.x internal network, mirroring traffic over a
192.168.1.x IP network.

SGT stands for security group tag of the monitored frame, P
field indicates that the ERSPAN payload is an Ethernet pro-
tocol frame. FT,Frame Type, indicates whether the mirrored
frame is a Ethernet 802.3 frame, or a IP packet. Hardware
ID, Hw ID, is an unique identifier of an ERSPAN engine,
Direction bit, D, indicates whether the original frame was
SPAN’ed in ingress(0) or in egress(1). Finally, O indicates
whether or not the optional platform-specific subheader is
presented.

Implementation: For type III, we introduced another
two fields to kernel through netlink API; hardware ID and
direction. The COS, BSO, and T fields can be extracted
or inferred from the mirrored frame. Timestamp value is
calculated by calling the kernel ktime_get_real() with
100 microseconds granularity. Currently we do not support
other timer granularties. In addition, the SGT is hard-coded
to 0, non-ethernet mirrored packet is not supported, so FT
is always O and P is set to 1. There is no implementation of
sub-headers, so O bit is 0.

3. Example Use Case

We use Figure 3 as an example topology to demostrate the
three configuration ways of ERSPAN. Assuming a network
administrator wants to monitor a network consisting of 1)
physical machines connected to Cisco switches, 2) virtual-
ized Linux machine with multiple VMs deployed and vir-
tual switch (openvswitch.ko) enforcing the fowarding poli-
cies, and 3) non-virtualized Linux physical machines, e.g.,
service nodes in data center such as gateways. Assuming
all the monitored servers are under IP network of 10.1.1.x,
and We place a traffic sniifer over another IP network of
192.168.1.x. The following subsection describes the config-
uration for each case.

3.1 Cisco Switch

We use Nexus 5000 switch and configure its ERSPAN tunnel
with session ID 10, remote IP pointing to the traffic sniffer,
192.168.1.1, and local IP address as 192.168.1.2. As a re-

sult, both the ingress and egress traffic on ports 11 and 12
will be msdfirrored to the remote sniffer.

monitor session 10 type erspan-source
erspan-id 10
vrf default
destination ip 192.168.1.1
source interface Ethernet1/11 both
source interface Ethernet1/12 both
no shut
monitor erspan origin ip-address 192.168.1.2 global

3.2 Open vSwitch Kernel Module

Open vSwitch consists of two components: a userspace dae-
mon, called ovs-vswitchd, and a flow cache as a kernel mod-
ule, called openvswitch.ko. While ovs-vswitchd talks to the
OpenFlow controller and programs its OpenFlow flow ta-
bles, the openvswitch.ko keeps a cache where the subsequent
flows are handled inside the kernel space.

The openvswitch.ko provides a user-facing netlink API
that models a network bridge that connects multiple ports
through a single table [9]. This example shows how to use
the netlink API provided by openvswitch.ko module, with
the utility, ovs-dpctl, to create a ERSPAN tunnel.

creating datapath named "mydp", attach vethl(port 2)
ovs-dpctl add-dp mydp
ovs-dpctl add-if mydp vethl // connected to VM1

creating erspan dev named "myerspan" and attach

lightweight tunnel is used with "external" keyword
ip link add dev myerspan type erspan external
ovs—-dpctl add-if mydp myerspan

flow entry for port 1 to erspan tunnel port 3
ovs—-dpctl add-flow \

tc qdisc add dev ethl handle ffff: ingress
tc filter add dev ethl handle ffff: ingress matchall \
skip_hw action mirred egress mirror dev myerspan

Metadata-mode with eBPF

ip link add dev myerspan type erspan external

tc qdisc add dev myerspan clsact

tc filter add dev myerspan egress bpf direct-action \
obj test_tunnel_kern.o section erspan_set_tunnel

tc qdisc add dev ethl handle ffff: ingress
tc filter add dev ethl parent ffff: matchall \
skip_hw action mirred egress mirror dev myerspan

Note that for metadata-mode tunnel, the tunnel con-
figuration is not provided from the ip route command
line, but is passed in to the tunnel by the eBPF program,
test_tunnel kern.o. A code snippet creating this object from
tools/testing/selftests/bpf/test_tunnel _kern.c is shown below.

SEC("erspan_set_tunnel")
int _erspan_set_tunnel(struct

{

__sk_buff *skb)
struct bpf_tunnel_key key;

struct erspan_metadata md;

int ret;

__builtin_memset (&key, 0x0, sizeof (key));
key.remote_ipv4 = 0xc0a80101; /* 192.168.1.100 */
key.tunnel_id = 30; // session ID

key.tunnel_tos = 0;
key.tunnel_ttl 64;

ret = bpf_skb_set_tunnel_key(skb, &key, sizeof (key),
BPF_F_ZERO_CSUM_TX) ;
if (ret < 0) {
ERROR(ret);
return TC_ACT_SHOT;
}

"in_port(1),eth(src=00:01:02:03:04:05,dst=10:11:12:13:14:15),\

eth_type (0x0800) ,ipv4(src=35.8.2.41,dst=172.16.0.20,proto=5,\

tos=0x80,tt1=128,frag=no)" \
"set (tunnel (tun_id=20,dst=192.168.1.1,tt1=64,\
erspan(ver=2,dir=1,hwid=0x4) ,flags (df |key))),3"

ovs—-dpctl dump-flows

3.3 iproute2 with/without eBPF

Assuming we want to mirror all traffic from the physical
device ethl to an ERSPAN tunnel with session ID 30, as
shown in the right Figure 3, we first create a native-mode
ERSPAN tunnel using ip-link command, and mirror traffic
from ethl to the ERSPAN tunnel netdev. For eBPF use
case, instead of creating native-mode tunnel, we create a
metadata-mode tunnel using the key word “external”. Then,
tc qdisc and filter rules are created for a eBPF program [1, 2],
“test_tunnel kern.o” with section name “set_erspan” to be
executed, when receiving a packet from ethl and sending
through the “myerspan” tunnel device.

Native-mode without using eBPF

ip link add dev myerspan type erspan seq key 30 \

local 192.168.1.4 remote 192.168.1.1 \
erspan_ver 1 erspan 123

ethl is the mirrored device

__builtin_memset(&md, O, sizeof(md));
md.version = 1;
md.u.index = bpf_htonl(123);

ret = bpf_skb_set_tunnel_opt(skb, &md, sizeof(md));
if (ret < 0) {

ERROR (ret) ;

return TC_ACT_SHOT;
¥

return TC_ACT_OK;

4. Conclusion

Port mirroring is the most common troubleshooting tech-
nique allowing a user to send a copy of the monitored traf-
fic to a packet analyzer. ERSPAN extends its precedences,
SPAN and RSPAN, by allowing the monitored traffic to
route across IP networks. In this paper, we describe the im-
plementation of ERSPAN and demonstrate three ways to
use the ERSPAN protocol in Linux, by creating a native-
mode ERSPAN tunnel , or by creating eBPF byte-code with
metadata-mode tunnel, or by using Open vSwitch kernel
module. We’d like to thank many people for giving review
comments feedbacks for our ERSPAN patches.

References

[1] Daniel Borkmann. Advanced programmability and recent
updates with tc’s cls_bpf. NetDev 1.2,2016.

[2] Daniel Borkmann. On getting tc classifier fully programmable
with cls bpf. NetDev 1.1,2016.

[3] M. Foschiano. Cisco Systems’ Encapsulated Remote Switch
Port Analyzer (ERSPAN). https://tools.ietf.org/
html/draft-foschiano-erspan-00, October 2014.

[4] T Graf. Lightweight flow based encapsulation. Linux kernel.
https://lwn.net/Articles/651497/, August 2016.

[5] T Graf. Lightweight flow based encapsulation. Linux kernel.
https://lwn.net/Articles/651497/, August 2016.

[6] Teemu Koponen, Keith Amidon, Peter Balland, Martin
Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev, Jesse
Gross, Paul Ingram, Ethan J Jackson, et al. Network virtual-
ization in multi-tenant datacenters. In NSDI, volume 14, pages
203-216, 2014.

[7] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy
Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer,
Pravin Shelar, et al. The design and implementation of open
vswitch. In 72th USENIX symposium on networked systems
design and implementation (NSDI 15), pages 117-130, 2015.

[8] Jamal Hadi Salim. Linux traffic control classifier-action sub-
system architecture.
[9] Joe Stringer. Openvswitch without Open vSwitch: The API

and its users. NetDey 2.1, 2017.

[10] W Tu. Erspan: add link to protocol spec and refactoring.
Wireshark, commit 03bc58d07276, July 2016.

[11] W Tu. Erspan: support platform specific sub-header. Wire-
shark, commit 147cac3at73d, July 2016.

[12] W Tu. ERSPAN version 2 (type III) support. https://lwn.
net/Articles/741771/, August 2016.

[13] W Tu. gre: add collect_-md mode for ERSPAN tunnel. Linux
kernel, commit, August 2016.

[14] W Tu. gre: add sequence number for collect md mode. Linux
kernel, commit 77a5196a804e, December 2017.

[15] W Tu. ip6_gre: add erspan v2 support. Linux kernel, commit
94d7d8£29287, December 2017.

[16] W Tu. ip6_gre: add ip6 erspan collect_md mode. Linux kernel,
commit ef7baf5e083c, December 2017.

[17] W Tu. ip6_gre: add ip6 gre and gretap collect_md mode. Linux
kernel, commit 6712abc168eba, December 2017.

[18] W Tu. erspan: set bso bit based on mirrored packet’s len.
Linux kernel, commit d48f1958ab7d, May 2018.

