
Scaling Linux bridge forwarding database

Roopa Prabhu, Nikolay Aleksandrov

Cumulus Networks,
 Mountain View, CA, USA,

roopa@cumulusnetworks.com, nikolay@cumulusnetworks.com

Abstract
Linux bridge is deployed on Hosts, Hypervisors, Container OS's
and in most recent years on data center switches. It is complete in
its feature set with forwarding, learning, proxy and snooping
functions. It can bridge layer-2 domains between VM's,
Containers, Racks, POD's and between data centers as seen with
Ethernet-Virtual Private networks [1]. With Linux bridge
deployments moving up the rack, it is now bridging larger layer-2
domains bringing in scale challenges. The bridge forwarding
database can scale to thousands of entries on a data center switch
with hardware acceleration support.

In this paper we discuss performance and operational challenges
with large scale bridge forwarding database and solutions to
address them. We will discuss solutions like FDB dst port failover
for faster convergence and faster API for FDB updates from
control plane.

Most solutions though discussed around the below deployment
scenarios, are generic and can be applied to all bridge use-cases:

– Multi-chassis link aggregation scenarios where Linux bridge is
part of the active-active switch redundancy solution

– Ethernet VPN solutions where Linux bridge forwarding
database is extended to reach Layer-2 domains over a network
overlay like VxLAN.

Keywords
Netlink, Linux bridge, iproute2, E-VPN, VTEP

 Introduction
A bridge is a networking device that creates a single aggregate
network by connecting multiple network segments. This function
is called bridging. Bridges use a table called forwarding database
(FDB) to forward frames between network segments. A FDB
entry carries a mac, vlan and a destination port. By default a
bridge builds its FDB via flood and learn. Bridge FDB can also
be populated via a controller or a control plane protocol.

Linux bridge [2] is a software bridge providing bridging function
in the Linux networking stack. It can bridge between multiple
network devices or interfaces known as bridge ports. Any
network device can be a bridge port. The Linux bridge can bridge,
learn, snoop, initiate and terminate tunnels. There are two variants
of the Linux bridge: default non-vlan filtering bridge and the
other more recent vlan filtering bridge. In this paper, we will
focus on the vlan filtering bridge.

The Linux bridge forwarding database supports Netlink based
API (RTM_*NEIGH) to add/delete/update/refresh a bridge fdb
entry [3]. The Linux bridge also supports an API to add hardware
learnt entries to the bridge forwarding database [4]. NTF_USE
flag can be used by control plane in user-space to refresh a bridge
fdb entry [5].

Fig1: Linux bridge on a switch bridging traffic between hosts

Fig1 shows hosts H1 and H2 connected to a switch running Linux
bridge. Switch ports connected to hosts are in the bridge. Bridge
FDB is indexed by <MAC, VLAN> and points to a destination
(dst) port.

Linux Bridge and Network Virtualization

Network Virtualization
Network virtualization combines physical networks into a single
virtual network. It comprises of the underlying physical network
(underlay) and a virtual network (overlay) that is built on top of
the underlay network. This paper focuses on the use of VxLan as
the network virtualization technology. All references to Network
overlay and network virtualization are VxLan. Network
virtualization endpoints (NVE) initiate and terminate a network
virtualization overlay. We will refer to VxLan tunnel end point as
VTEP. Linux kernel has VxLan support and can be deployed as a

mailto:nikolay@cumulusnetworks.com
mailto:roopa@cumulusnetworks.com

VxLan tunnel end point (VTEP). A VTEP can run completely in
software or run on a switch chip with hardware acceleration. A
first hop switch configured as a VTEP maps connected end
devices (or hosts) to VxLan segments.

The Linux bridge maps traffic between the local endpoint Vlan to
a VxLan segment. As shown in the fig below, this is achieved by
two interfaces: a local interface connecting the end point device
and a VxLan device enslaved in a bridge. The Vlan to VxLan
mapping is achieved by configuring Vlans on the local port and
on the VxLan device. To scale this to large number of VxLan
endpoints one can use a VxLan single device with a vlan-vni
map [1].

Fig 2. Bridging and Network virtualization

switch1 and switch2 are VTEPs connected by an overlay. vxLan0
is a bridge port. Vxlan FDB is an extension of the bridge FDB.
Local macs in the bridge FDB point to non-VxLan ports. Remote
macs reachable over the overlay point to VxLan ports. For every
bridge mac pointing to the VxLan device, there is a
corresponding mac in VxLan FDB with remote destination
(remote VTEP) information. A all-zero default entry in the VxLan
FDB can point to multiple VTEP's for broadcast-unknown-
unicast-multicast (BUM) traffic. Such a FDB entry has <MAC,
VNI> pointing to multiple remote destinations. Vxlan Driver
replicates a BUM packet to each of these remote dsts.

Network virtualization is normally assisted by a control plane. It
can be a centralized or distributed control plane. E-VPN [6] is the
new and popular control plane for network virtualization in the
data-center. The internet routing protocol BGP with a new
“TYPE” is used as a control plane protocol. In EVPN, mac
address reachability is learned and distributed by BGP control
plane similar to routes.

On Linux, a BGP daemon with E-VPN support like FRR [7],
learns local bridge FDB entries and distributes it to other E-VPN
BGP Peers. Remote bridge FDB entries received via remote E-
VPN BGP peers are installed in the kernel bridge FDB.

Bridge FDB scale
Linux bridge on a data center switch bridges layer 2 networks
across racks or data-center pods or in some cases across data
centers. With hardware acceleration, Linux bridge can see more
than 150k FDB entries on some systems. These FDB entries in
the most basic case are populated via flood and learn. In the
network virtualization use case, bridging domains are further
extended via overlays and distributed via controllers. We will see
in future sections how multi-homing solutions multiply this scale
by distributing FDB across multi-homed switches. We look at
scaling bridge forwarding database with various parameters:

Learning at scale: Linux Bridge driver is capable of learning at
scale. New updates to bridge FDB to use rhashtables [8] has
allowed bridge FDB to scale close to a million entries. The
external learn bridge FDB API [4] allows in-kernel hardware
drivers to update bridge FDB with hardware learnt mac addresses
at scale. Netlink batching mechanisms can be used for control
plane MAC learning at scale.

Optimized broadcast-multicast-unknown unicast (BUM)
Handling: A common problem with larger layer 2 bridging
domain is flooding of (BUM) traffic at scale. The bridge driver
provides multiple knobs to selectively turn on BUM handling on
a per bridge port basis to optimize your network. In bridging with
network virtualization case (eg VxLan), multicast tunnels can be
used to reduce flood traffic across the overlays. Most network
virtualization deployments use control plane or controller
orchestrated mac distribution to reduce or eliminate flooding.
Further, Linux bridge driver supports ARP and ND proxying to
reduce flooding [9]. Future work will address moving bridge
multicast database (MDB) [10] to a rhashtable and IGMP MLD
proxy to reduce multicast protocol traffic across the overlay [18].

Network recovery and convergence on link failure: Bridge
driver flushes dynamically learnt FDB entries on failed links.
These flushed entries can be restored on link repairs by normal
flood and learn procedures or by control-plane. At scale, this can
result in larger downtime, churn and slower network
convergence. Recent bridge backup port work [11] helps
alleviate this issue. This work allows system administrator or
control plane to program a backup bridge port for every bridge
port at provisioning time. When such config is present, bridge
driver will not flush bridge FDB entries and seamlessly re-direct
traffic to the back-up path if the primary path is down. And
restore traffic to the primary path when it comes back up. This
completely eliminates control plane intervention during
failure recovery leading to faster network convergence.

Network convergence on MAC moves: Mac moves are a result
of an end-point moving to another host or to another port thereby
changing the FDB entry destination for that mac. If left on its

own, the FDB entries age out and the network converges
eventually. But, on data center switches these FDB aging timers
can be more than 5mins leading to longer network outages by
black-holing traffic. In the network virtualization case, due to the
nature of stacked FDB between bridge and VxLan driver, there is
a chance the stacked FDB's can go out of sync. We show this with
an example: In fig 2, if a remote host H2 moves local to switch1,
the bridge FDB entry on switch1 is updated to point to a local
port. Bridge driver has detected this move due to a packet from
H2. But the VxLan FDB entry can still exist pointing to a remote
VTEP switch2 until it ages out. There are multiple solutions to
make make these mac moves converge faster (a) Control plane
detects the move (via bridge driver async FDB update netlink
notifications) and intervenes to update the FDB to point to the
right destination port faster. It can use the bridge FDB replace
Netlink API to update the FDB entry. (b) Bridge driver can
proactively call into the overlay (VxLan) port to update its FDB
(delete stale FDB entry in the earlier example).

Bridging and Multihoming
Multihoming is the practice of connecting host or a network to
more than one network (device) to increase reliability and
performance. The network switches providing multihoming
solution run a protocol between them to ensure redundancy and
failure recovery for the connected end-points or networks. In this
paper we will look at such switches as a “cluster of switches
running Linux” providing redundancy and greater system
throughput to multi-homed end-points or networks.

Multihoming with Dedicated Link
Multihoming with a dedicated link, also called Multi-Chassis
Link Aggregation (MLAG), enables a server or switch with a
two-port bond, such as a link aggregation group/LAG,
EtherChannel, port group or trunk, to connect those ports to
different switches and operate as if they are connected to a single
logical switch.

Fig 3: Multi-homing with dedicated peerlink

Fig 3 shows a typical multi-homed network with a dedicated link
in between the switches. Host H1 and H2 are multi-homed to
switches switch1 and switch2. The dedicated link (peerlink) in
most cases is a bond for redundancy. Peerlink provides failover
path on failure of a direct path to the end host. The multihoming
protocol running on switch1 and switch2 keep the bridge FDB
and MDB [10] in sync between the peers. This protocol also
learns dual and singly connected end points from FDB. This
involves keeping FDB alive and refreshed after they age out.
Mac's learnt by the peer on a singly connected host are installed
in the bridge FDB pointing to the peerlink.

Failure handling: In the event of a link failure, the MLAG
control plane re-programs the bridge FDB to point MAC's on the
failed link to peerlink. For faster network convergence, this re-
programming of the FDB has to be as fast as possible. Dedicated
peerlink interface in such a multihoming deployment is a static
physical link between the peer switches and has to be configured
at provisioning time. It serves as a backup link for all dually
connected ports. For faster convergence of network traffic, bridge
driver can implicitly re-direct traffic to the peerlink in the event
of a primary link failure. The patch in [11] does just that. It adds a
per bridge port flag (IFLA_BRPORT_BACKUP Netlink
attribute) to indicate a backup port. The MLAG control plane can
set this flag on dually connected links. This ensures minimal
downtime on Link failures.

Multihoming with network overlay
With new BGP control plane for network virtualization [6],
network overlay can be used to replace the dedicated link in
traditional multihoming solution [13]. This scheme allows for
multiple redundant paths for multi-homed hosts. Eliminating a
dedicated peer switch link, ability to have more than one
redundant path and a open standards based control plane have
been the primary factors for popularity of such a new multi-
homing solution.

Fig 4: Multihoming with network overlay

Fig4 shows host H1 multi-homed to three switches switch1,
switch2 and swicth3. Host H2 multi-homed to switch1 and
switch3 and Host H3 multi-homed to switch2 and switch3.
Network overlay ports (vxlan0) provide backup paths across the
overlay in the event of a local path failure.

BGP EVPN control plane is capable of advertising a notion of an
ethernet segment (ES) via ES routes. All redundant links to a
multi-homed end-point belong to the same ES. This is key in
determining multi homed links in the distributed BGP E-VPN
multihoming control plane.

On Linux, as we have seen, the VxLan FDB is an extension to the
bridge FDB. For E-VPN multihoming, the VxLan FDB entry for
a end-point MAC points to list of remote virtualization end-points
(VTEP's) providing multi-homing function to the end-point. In a
active-active multi-homed solution, this list of remote VTEP's
provide redundant paths and hence such a FDB entry must be
treated as a Equal cost multi-path group (ECMP) similar to route
ECMP groups.

Failure Handling: Failover to backup network ports (VxLan) on
local bridge port failure works similar to the dedicated peerlink
multihoming case as seen earlier in this paper [11]. In this
scheme, VxLan bridge ports are configured as backup bridge
ports by the E-VPN multihoming control plane. Upon a failure in
connectivity to an attached ES, the E-VPN multihoming control
plane withdraws its advertised ES routes from peer E-VPN
instances. The E-VPN RFC [13] describes several other
optimizations for faster convergence [14]. In scaled
environments, the network convergence time is a function of
number of mac advertisements that must be withdrawn on
failures. E-VPN control plane optimizations like designated
forwarder [15], split horizon checks [16] and aliasing [17] are
used to prevent loops, reduce BUM flooding and reduce FDB
updates.

To reflect these optimizations in the forwarding plane (eg VxLan
FDB), we will need a scalable FDB update API to assist control
plane in faster updates to the FDB entries pointing to remote
network virtualization ports. In other words, we need a scalable
FDB API to update overlay VxLan FDB remote destinations.

Fig 5. Current Vxlan FDB structure

As seen earlier in this paper, a VxLan FDB entry has <MAC,
VNI> pointing to a list of remote destinations (VTEPs). Lets call
the list of remote destinations “dst groups”.

Scalable FDB dst group update API: Goal is to have an API
with faster FDB dst group update mechanism. This leads us to
think of mac FDB entries as routes. FDB entries are macs
pointing to dst groups. Dst groups can have a single dst, multiple
dsts for replication or multiple dsts for ECMP. We propose a
separate dst group database indexed by dst group id. FDB entries
carry dst group ids.

Fig 6: New VxLAN FDB structure

In the vxlan case, dst = rdst or remote dst.

Considerations for the new API: Extend AF_BRIDGE
RTM_NEIGH* api with NDA_DST_GRP_ID attribute.

New Netlink API to create/delete/update dsts and dst groups:
RTM_NEWDST, RTM_DELDST, RTM_GETDST
enum {
 NDA_DST_GROUP_UNSPEC,
 NDA_DST_GROUP_ID,
 NDA_DST_GROUP_FLAGS,
 NDA_DST_GROUP_ENTRY,
 __NDA_DST_GROUP_MAX,
};

#define NDA_DST_GROUP_MAX
(__NDA_DST_GROUP_MAX – 1)

enum {
 NDA_DST_UNSPEC,
 NDA_DST_IP,

 NDA_DST_VNI,
 NDA_DST_PORT,
 __NDA_DST_MAX,
}
#define NDA_DST_MAX (__NDA_DST_MAX – 1)

/* dst group flags */
#define NTF_DST_GROUP_REPLICATION 0x01
#define NTF_DST_GROUP_ECMP 0x02

We are also considering re-use of the new route nexthop API if
feasible [18]

Acknowledgements
We would like to thank Wilson Kok, Anuradha Karuppiah, Vivek
Venkataraman, and Balki Ramakrishnan for discussions,
knowledge and requirements for building better Multihoming
solutions on Linux.

Conclusions
In this paper we discussed scale challenges and solutions with
Linux bridge in network virtualization and multi-homed
environments. We showed how recent work has improved bridge
learning and failure handling at scale. We categorized scale
challenges based on learning, network convergence on failures
mac moves, flooding and other factors at scale. We also suggested
solutions to help build faster scalable multi-homing and network
virtualization solutions with switches running Linux.

References
1. Linux bridge, Layer-2 gateways and ethernet

VPNs: https://netdevconf.org/2.2/session.html?prabhu-
linuxbridge-tutorial

2. Linux bridge driver:
https://git.kernel.org/pub/scm/linux/kernel/git/davem/ne
t-next.git/tree/net/bridge

3. Linux bridge FDB API
https://git.kernel.org/pub/scm/linux/kernel/git/davem/ne
t-next.git/tree/net/core/rtnetlink.c#n3571

4. Api to add externally learnt entries with
NTF_EXT_LEARNED:
https://git.kernel.org/pub/scm/linux/kernel/git/davem/ne
t-next.git/tree/net/bridge/br_fdb.c#n1086

5. Linux bridge NTF_USE flag to refresh bridge
forwarding entries via control plane:
https://patchwork.ozlabs.org/patch/124774/

6. A Network Virtualization Overlay Solution using
EVPN: https://tools.ietf.org/html/draft-ietf-bess-evpn-
overlay-12

7. FRR routing: https://frrouting.org/
Use rhashtables for bridge FDB:
http://patchwork.ozlabs.org/patch/847503/

8. Use rhashtables for bridge FDB:
http://patchwork.ozlabs.org/patch/847503/

9. bridge arp nd suppression:
https://patchwork.ozlabs.org/cover/822906/

10. bridge multicast database: http://man7.org/linux/man-
pages/man8/bridge.8.html

11. net: bridge: add support for backup port:
https://patchwork.ozlabs.org/cover/947461/

12. MLAG https://en.wikipedia.org/wiki/MC-LAG
13. E-VPN Multihoming:

https://tools.ietf.org/html/rfc8365#section-8
14. E-VPN Multihoming: Fast convergence:

https://tools.ietf.org/html/rfc8365#section-8.1.2
15. E-VPN Designated forwarder:

https://tools.ietf.org/html/rfc8365#section-8.1.5
16. E-VPN multihoming split horizon:

https://tools.ietf.org/html/rfc8365#section-8.1.3
17. E-VPN Aliasing and Backup Path:

https://tools.ietf.org/html/rfc8365#section-8.1.4
18. Route Nexthop groups: https://lwn.net/Articles/763950/
19. IGMP MLD proxy for E-VPN

https://tools.ietf.org/html/draft-ietf-bess-evpn-igmp-
mld-proxy-02

Author Biography
Roopa Prabhu leads the kernel networking group at Cumulus
Networks. At Cumulus she works on networking in the Linux
kernel and user-space, Network interface management and other
system infrastructure areas. Her previous experience includes
Linux clusters, ethernet drivers and Linux KVM virtualization
platforms.

Nikolay initially was a FreeBSD kernel developer working on
proprietary network projects, then joined Red Hat where he
maintained a few Linux network drivers internally and started
contributing to upstream. Now he is a part of Cumulus Networks,
working on the Linux network stack and actively contributing to
upstream.

https://tools.ietf.org/html/draft-ietf-bess-evpn-igmp-mld-proxy-02
https://tools.ietf.org/html/draft-ietf-bess-evpn-igmp-mld-proxy-02
https://tools.ietf.org/html/rfc8365#section-8.1.2
https://tools.ietf.org/html/rfc8365#section-8.1.4
https://lwn.net/Articles/763950/
http://patchwork.ozlabs.org/patch/847503/
http://patchwork.ozlabs.org/patch/847503/
https://netdevconf.org/2.2/session.html?prabhu-linuxbridge-tutorial
https://netdevconf.org/2.2/session.html?prabhu-linuxbridge-tutorial
https://en.wikipedia.org/wiki/MC-LAG
https://patchwork.ozlabs.org/cover/947461/
http://man7.org/linux/man-pages/man8/bridge.8.html
http://man7.org/linux/man-pages/man8/bridge.8.html
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-12
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-12

	Introduction
	Linux Bridge and Network Virtualization
	Network Virtualization
	Bridge FDB scale
	Bridging and Multihoming
	Multihoming with Dedicated Link
	Multihoming with network overlay
	Acknowledgements
	Conclusions
	References
	Author Biography

