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Abstract
Linux bridge is deployed on Hosts, Hypervisors, Container OS's
and in most recent years on data center switches. It is complete in
its  feature  set  with  forwarding,  learning,  proxy  and  snooping
functions.  It  can  bridge  layer-2  domains  between  VM's,
Containers, Racks, POD's and between data centers as seen with
Ethernet-Virtual  Private  networks  [1].  With  Linux  bridge
deployments moving up the rack, it is now bridging larger layer-2
domains  bringing  in  scale  challenges.  The  bridge  forwarding
database can scale to thousands of entries on a data center switch
with hardware acceleration support.

In this paper we discuss performance and operational challenges
with  large  scale  bridge  forwarding  database  and  solutions  to
address them. We will discuss solutions like FDB dst port failover
for  faster  convergence  and  faster  API  for  FDB  updates  from
control plane.

Most solutions though discussed around the below deployment
scenarios, are generic and can be applied to all bridge use-cases:

– Multi-chassis link aggregation scenarios where Linux bridge is
part of the active-active switch redundancy solution

– Ethernet  VPN  solutions  where  Linux  bridge  forwarding
database is extended to reach Layer-2 domains over a network
overlay like VxLAN.
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 Introduction
A bridge is a networking device that creates a single aggregate
network by connecting multiple network segments. This function
is called bridging. Bridges use a table called forwarding database
(FDB)  to  forward  frames  between  network  segments.  A FDB
entry carries  a  mac,  vlan and  a  destination port.  By default  a
bridge  builds its FDB via flood and learn. Bridge FDB can also
be populated via a controller or a control plane protocol. 

Linux bridge [2] is a software bridge providing bridging function
in the Linux networking stack.  It  can bridge between multiple
network  devices  or  interfaces  known  as  bridge  ports.  Any
network device can be a bridge port. The Linux bridge can bridge,
learn, snoop, initiate and terminate tunnels. There are two variants
of  the  Linux  bridge:  default  non-vlan  filtering  bridge  and  the
other  more  recent  vlan  filtering  bridge.  In  this  paper,  we  will
focus on the vlan filtering bridge. 

The  Linux bridge  forwarding  database  supports  Netlink  based
API (RTM_*NEIGH) to  add/delete/update/refresh a  bridge  fdb
entry [3]. The Linux bridge also supports an API to add hardware
learnt entries to the bridge forwarding  database [4]. NTF_USE
flag can be used by control plane in user-space to refresh a bridge
fdb entry [5].

Fig1: Linux bridge on a switch bridging traffic between hosts

Fig1 shows hosts H1 and H2 connected to a switch running Linux
bridge. Switch ports connected to hosts are in the bridge. Bridge
FDB is indexed by <MAC, VLAN> and points to a destination
(dst) port.

Linux Bridge and Network Virtualization

Network Virtualization
Network virtualization combines physical networks into a single
virtual network. It comprises of the underlying physical network
(underlay) and a virtual network (overlay) that is built on top of
the underlay network. This paper focuses on the use of VxLan as
the network virtualization technology. All references to Network
overlay  and  network  virtualization  are  VxLan.  Network
virtualization endpoints (NVE) initiate and terminate a network
virtualization overlay. We will refer to VxLan tunnel end point as
VTEP. Linux kernel has VxLan support and can be deployed as a
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VxLan tunnel end point (VTEP). A VTEP can run completely in
software or run on a switch chip with hardware acceleration. A
first  hop  switch  configured  as  a  VTEP maps  connected  end
devices (or hosts) to VxLan segments. 

The Linux bridge maps traffic between the local endpoint Vlan to
a VxLan segment. As shown in the fig below, this is achieved by
two interfaces: a local interface connecting the end point device
and a VxLan device enslaved in a bridge.  The Vlan to VxLan
mapping is achieved by configuring Vlans on the local port and
on the VxLan device. To scale this to large number of VxLan
endpoints  one can use a  VxLan single  device  with a  vlan-vni
map [1]. 

Fig 2. Bridging and Network virtualization

switch1 and switch2 are VTEPs connected by an overlay. vxLan0
is a bridge port. Vxlan FDB is an extension of the bridge FDB.
Local macs in the bridge FDB point to non-VxLan ports. Remote
macs reachable over the overlay point to VxLan ports. For every
bridge  mac  pointing  to  the  VxLan  device,  there  is  a
corresponding  mac  in  VxLan  FDB  with  remote  destination
(remote VTEP) information. A all-zero default entry in the VxLan
FDB  can  point  to  multiple  VTEP's  for  broadcast-unknown-
unicast-multicast (BUM) traffic. Such a FDB entry has <MAC,
VNI>  pointing  to  multiple  remote  destinations.  Vxlan  Driver
replicates a BUM packet to each of these remote dsts.

Network virtualization is normally assisted by a control plane. It
can be a centralized or distributed control plane. E-VPN [6] is the
new and popular control plane for network virtualization in the
data-center.  The  internet  routing  protocol  BGP  with  a  new
“TYPE”  is  used  as  a  control  plane  protocol.  In  EVPN,  mac
address  reachability  is  learned and  distributed by  BGP control
plane similar to routes.

On Linux,  a  BGP daemon with E-VPN support  like FRR [7],
learns local bridge FDB entries and distributes it to other E-VPN
BGP Peers. Remote bridge FDB entries received via remote E-
VPN BGP peers are installed in the kernel bridge FDB.

Bridge FDB scale
Linux bridge on a data center switch bridges layer 2 networks
across  racks  or  data-center  pods  or  in  some cases  across  data
centers. With hardware acceleration, Linux bridge can see more
than 150k FDB entries on some systems. These FDB entries in
the  most  basic  case  are  populated  via  flood  and  learn.  In  the
network  virtualization  use  case,  bridging  domains  are  further
extended via overlays and distributed via controllers. We will see
in future sections how multi-homing solutions multiply this scale
by  distributing  FDB across  multi-homed switches.  We look  at
scaling bridge forwarding database with various parameters:

Learning at scale: Linux Bridge driver is capable of learning at
scale.  New updates  to  bridge  FDB to  use  rhashtables  [8]  has
allowed   bridge  FDB to  scale  close  to  a  million  entries.  The
external  learn bridge  FDB API [4]  allows in-kernel  hardware
drivers to update bridge FDB with hardware learnt mac addresses
at scale.  Netlink batching mechanisms can  be used for control
plane MAC learning at scale.

Optimized  broadcast-multicast-unknown  unicast  (BUM)
Handling: A common  problem  with  larger  layer  2  bridging
domain is flooding of (BUM) traffic at scale. The bridge driver
provides multiple knobs to selectively turn on BUM handling on
a per bridge port basis to optimize your network. In bridging with
network virtualization case (eg VxLan), multicast tunnels can be
used to reduce flood traffic  across the overlays.  Most  network
virtualization  deployments  use  control  plane  or  controller
orchestrated  mac  distribution  to  reduce  or  eliminate  flooding.
Further, Linux bridge driver supports ARP and ND proxying to
reduce flooding [9].  Future  work will  address   moving bridge
multicast database (MDB) [10] to a rhashtable and IGMP MLD
proxy to reduce multicast protocol traffic across the overlay [18]. 

Network  recovery  and  convergence  on  link  failure:  Bridge
driver  flushes  dynamically  learnt  FDB entries  on  failed  links.
These flushed entries can be restored on link repairs by normal
flood and learn procedures or by control-plane. At scale, this can
result in larger downtime,  churn and slower network 
convergence. Recent bridge backup port work [11] helps 
alleviate this issue. This work allows system administrator or 
control plane to program a backup bridge port for every bridge 
port at provisioning time. When such config is present, bridge 
driver will not flush bridge FDB entries and seamlessly re-direct 
traffic to the back-up path if the primary path is down. And 
restore traffic to the primary path when it comes back up. This 
completely eliminates control plane intervention during 
failure recovery leading to faster network convergence.

Network convergence on MAC moves: Mac moves  are a result
of an end-point moving to another host or to another port thereby
changing the FDB entry destination for that mac.  If  left  on its



own,  the  FDB  entries  age  out  and  the  network  converges
eventually. But, on data center switches these FDB aging timers
can be more than 5mins leading to longer network outages by
black-holing traffic. In the network virtualization case, due to the
nature of stacked FDB between bridge and VxLan driver, there is
a chance the stacked FDB's can go out of sync. We show this with
an example: In fig 2, if a remote host H2 moves local to switch1,
the bridge FDB entry on switch1 is updated to point to a local
port. Bridge driver has detected this move due to a packet from
H2. But the VxLan FDB entry can still exist pointing to a remote
VTEP switch2 until it ages out. There are multiple solutions to
make make these mac moves converge faster (a) Control plane
detects  the move (via  bridge driver  async  FDB update  netlink
notifications) and intervenes to update the FDB to point to the
right destination port faster.  It  can use the bridge FDB replace
Netlink  API  to  update  the  FDB  entry.  (b)  Bridge  driver  can
proactively call into the overlay (VxLan) port to update its FDB
(delete stale FDB entry in the earlier example).

Bridging and Multihoming
Multihoming is the practice of connecting host or a network to
more  than  one  network  (device)  to  increase  reliability  and
performance.  The  network  switches   providing  multihoming
solution run a protocol between them to ensure redundancy and
failure recovery for the connected end-points or networks. In this
paper  we  will  look  at  such  switches  as  a  “cluster  of  switches
running  Linux”  providing  redundancy  and  greater  system
throughput to multi-homed end-points or networks.

Multihoming with Dedicated Link
Multihoming  with  a  dedicated  link,  also  called  Multi-Chassis
Link Aggregation (MLAG),  enables a  server  or switch with  a
two-port  bond,  such  as  a  link  aggregation  group/LAG,
EtherChannel,  port  group or  trunk,  to  connect  those  ports  to
different switches and operate as if they are connected to a single
logical switch. 

Fig 3: Multi-homing with dedicated peerlink

Fig 3 shows a typical multi-homed network with a dedicated link
in between the switches. Host H1 and H2 are multi-homed to
switches switch1 and switch2. The dedicated link (peerlink) in
most cases is a bond for redundancy. Peerlink provides failover
path on failure of a direct path to the end host. The multihoming
protocol running on switch1 and switch2 keep the bridge FDB
and MDB [10] in sync between the peers.  This protocol also
learns  dual  and  singly  connected  end points  from FDB.  This
involves keeping FDB alive and refreshed after they age out.
Mac's learnt by the peer on a singly connected host are installed
in the bridge FDB pointing to the peerlink. 

Failure  handling: In  the  event  of  a  link  failure,  the  MLAG
control plane re-programs the bridge FDB to point MAC's on the
failed link to peerlink. For faster network convergence, this re-
programming of the  FDB has to be as fast as possible. Dedicated
peerlink interface in such a multihoming deployment is a static
physical link between the peer switches and has to be configured
at  provisioning  time.  It  serves  as  a  backup link  for  all  dually
connected ports. For faster convergence of network traffic, bridge
driver can implicitly re-direct traffic to the  peerlink in the event
of a primary link failure. The patch in [11] does just that. It adds a
per  bridge  port  flag  (IFLA_BRPORT_BACKUP  Netlink
attribute) to indicate a backup port. The MLAG control plane can
set  this  flag  on  dually  connected  links.  This  ensures  minimal
downtime on Link failures.

Multihoming with network overlay
With  new  BGP  control  plane  for  network  virtualization  [6],
network  overlay  can  be  used  to  replace  the  dedicated  link  in
traditional  multihoming  solution  [13].  This  scheme  allows  for
multiple  redundant  paths  for  multi-homed hosts.  Eliminating a
dedicated  peer  switch  link,  ability  to  have  more  than  one
redundant path and a open standards based  control  plane have
been  the  primary  factors  for  popularity  of  such  a  new multi-
homing solution. 



Fig 4: Multihoming with network overlay

Fig4  shows  host  H1  multi-homed  to  three  switches  switch1,
switch2  and  swicth3.  Host  H2  multi-homed  to  switch1  and
switch3  and  Host  H3  multi-homed  to  switch2  and  switch3.
Network overlay ports (vxlan0) provide backup paths across the
overlay in the event of a local path failure.

BGP EVPN control plane is capable of advertising a notion of an
ethernet  segment  (ES)  via  ES routes.  All  redundant  links to  a
multi-homed end-point  belong to the same ES.  This  is  key  in
determining multi  homed links in  the distributed BGP E-VPN
multihoming control plane. 

On Linux, as we have seen, the VxLan FDB is an extension to the
bridge FDB. For E-VPN multihoming, the VxLan FDB entry  for
a end-point MAC points to list of remote virtualization end-points
(VTEP's) providing multi-homing function to the end-point. In a
active-active  multi-homed  solution,  this  list  of  remote  VTEP's
provide redundant  paths and hence such a  FDB entry  must be
treated as a Equal cost multi-path group (ECMP) similar to route
ECMP groups.

Failure Handling: Failover to backup network ports (VxLan) on
local bridge port failure works similar to the dedicated peerlink
multihoming  case  as  seen  earlier  in  this  paper  [11].  In  this
scheme,  VxLan  bridge  ports  are  configured  as  backup  bridge
ports by the E-VPN multihoming control plane. Upon a failure in
connectivity to an attached ES, the E-VPN multihoming control
plane  withdraws  its  advertised  ES  routes  from  peer  E-VPN
instances.  The  E-VPN  RFC  [13]  describes  several  other
optimizations  for  faster  convergence  [14].  In  scaled
environments,  the  network  convergence  time  is  a  function  of
number  of  mac  advertisements  that  must  be  withdrawn  on
failures.  E-VPN  control  plane  optimizations  like   designated
forwarder [15],  split  horizon checks [16] and aliasing [17] are
used to  prevent  loops,  reduce BUM flooding and reduce FDB
updates.

To reflect these optimizations in the forwarding plane (eg VxLan
FDB), we will need a scalable FDB update API to assist control
plane  in  faster  updates  to  the  FDB entries  pointing  to  remote
network virtualization ports. In other words, we need a scalable
FDB API to update overlay VxLan FDB remote destinations. 

Fig 5. Current Vxlan FDB structure

As seen earlier in this paper,  a VxLan FDB entry has <MAC,
VNI> pointing to a list of remote destinations (VTEPs). Lets call
the list of remote destinations “dst groups”.

Scalable FDB dst group update API: Goal is to have an API
with faster FDB dst group update mechanism. This leads us to
think  of  mac  FDB  entries  as  routes.  FDB  entries  are  macs
pointing to dst groups. Dst groups can have a single dst, multiple
dsts  for  replication  or  multiple  dsts  for  ECMP.  We propose  a
separate dst group database indexed by dst group id. FDB entries
carry dst group ids.

Fig 6: New VxLAN FDB structure

In the vxlan case, dst = rdst or remote dst.

Considerations  for  the  new  API:  Extend  AF_BRIDGE
RTM_NEIGH* api with NDA_DST_GRP_ID attribute.

New Netlink  API  to  create/delete/update  dsts  and  dst  groups:
RTM_NEWDST, RTM_DELDST, RTM_GETDST
enum {
     NDA_DST_GROUP_UNSPEC,
     NDA_DST_GROUP_ID,
     NDA_DST_GROUP_FLAGS,
     NDA_DST_GROUP_ENTRY,
     __NDA_DST_GROUP_MAX,
};

#define  NDA_DST_GROUP_MAX
(__NDA_DST_GROUP_MAX – 1)

enum {
      NDA_DST_UNSPEC,
      NDA_DST_IP,



      NDA_DST_VNI,
      NDA_DST_PORT,
      __NDA_DST_MAX,
}
#define NDA_DST_MAX (__NDA_DST_MAX – 1)

/* dst group flags */
#define NTF_DST_GROUP_REPLICATION 0x01
#define NTF_DST_GROUP_ECMP 0x02

We are also considering re-use of the new route nexthop API if
feasible [18]
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Conclusions
In this  paper we discussed scale challenges  and solutions with
Linux  bridge  in  network  virtualization  and  multi-homed
environments. We showed how recent work has improved bridge
learning  and  failure  handling  at  scale.  We  categorized  scale
challenges based on learning,  network convergence on failures
mac moves, flooding and other factors at scale. We also suggested
solutions to help build faster  scalable multi-homing and network
virtualization solutions with switches running Linux. 
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