
Experiences Evaluating DCTCP

Lawrence Brakmo, Boris Burkov, Greg Leclercq, Murat Mugan

Facebook
Menlo Park, USA

Abstract
In this paper we describe our preliminary experiences eval-
uating DCTCP[12] for use in our data centers. Our testing
corroborates results from other groups indicating that
DCTCP is very effective in decreasing packet losses and re-
transmissions. In addition, DCTCP increases fairness be-
tween RPC flows of different sizes.
 We also discovered issues in our NIC’s firmware and the
DCTCP implementation in the Linux kernel that affected
DCTCP performance.
 Finally, we discovered that DCTCP can increase CPU
utilization under some conditions.

Keywords
TCP, Linux, congestion algorithms, DCTCP

 Introduction
The basic problem that a congestion algorithm attempts to
solve is how to fully, and fairly, utilize the available band-
width in a connection’s path. Work on this problem has been
going on for more than 30 years and still continues to this
date.
 Congestion control was added to TCP in 1988 by Van
Jacobson[8] to deal with congestion collapse, a network
condition where most of the bandwidth ends up being
wasted by packets that are later retransmitted. Since then
many new congestion control algorithms have been devel-
oped and added to Linux’s repertoire of TCP flavors
[1,2,3,5,6,7,9,10,12,13,14].
 Most of these congestion algorithms depend on packet
losses to detect network congestion. As a result, they fill
queues along bottleneck links resulting in standing queues
(non-dissipating queues) increasing latency.

These standing queues also introduce unfairness be-
tween RPCs of different lengths. When the RTT increases
from tens of micro-seconds to 1 millisecond, a 10KB RPC
can only do 80Mbps at best, while a 1MB RPC could theo-
retically go up to 8Gbps.

Furthermore, loss-based congestion control algorithms
increase tail latency as a result of delays in detecting packet
losses. Rather than preventing congestion, loss-based con-
gestion control algorithms need to periodically create packet
losses to detect that the available bandwidth is fully utilized.

In contrast, congestion avoidance algorithms try to de-
tect congestion before losses occur. Most congestion avoid-

ance algorithms try to detect congestion by detecting grow-
ing queues, an early stage of congestion. Most, like TCP-
Vegas[2] and BBR[13,11] use the RTT to detect queue
growth. Others, like DCTCP[12] use explicit congestion
signals from switches and routers.

ECN (Explicit Congestion Notification) is a framework
allowing switches to share congestion signals to senders and
receivers. IP headers use 2 bits for sharing ECN information.
If none of the bits are set, then the flow does not support
ECN and switches will not mark the packets. When only one
bit is set, then the flow supports ECN signals and no con-
gestion has been encountered. Finally, when both bits are
set, then the flow supports ECN and the packet has encoun-
tered congestion.

Congestion is detected through queue sizes. In the sim-
plest case, when a packet arrives, if the queue used to tem-
porarily store the packet is larger than some threshold, then
the packet is marked as having experienced congestion. This
signal then arrives at the receiver, and the receiver then
needs to notify the sender so it can adjust its rate appropri-
ately. For TCP flows, the signal is sent back on the TCP
header of the ACK packet.

The standard (pre-DCTCP) response of TCP is to reduce
its congestion window (cwnd) as if a packet had been
dropped. That is, Reno would reduce its cwnd by 50%. This
is a very aggressive reduction that can lead to link underuti-
lization in some networks. In addition, the standard response
does not differentiate between transient (very short lived)
and standing (long lived) congestion. For example, conges-
tion events (queues larger than a given threshold) that last
less than an RTT would still result in reducing cwnd.

In contrast, DCTCP employs a mechanism where the
cwnd is reduced proportionally to the level of congestion. It
achieves this by tracking the percentage of bytes per RTT
that encounter congestion and reducing the cwnd propor-
tionally. Thus if 100% of the bytes encounter congestion,
then DCTCP would reduce its cwnd by 50%. Whereas if
only 50% of the packets encounter congestion, then the
cwnd would only be reduced by 25%.

In practice, DCTCP uses a moving average in order to
deal with transient congestion. For example, if 100% of the
bytes in an RTT encounter congestion, but there was no con-
gestion in previous RTTs, then the cwnd would only be re-
duced by 1/32 instead of ½.

Overview
In order to determine the suitability of deploying DCTCP in
our data centers, we ran various tests. We started with sim-
ple 3 to 4 server intra-rack tests and finished with full rack
tests consisting of 4 to 6 racks.

Intra-Rack Tests
 For the 3 to 4 server within rack tests, we used
Netesto[4] for the tests. Netesto (Network Test Toolkit) is a
framework for running network tests which simplifies the
process of running complex tests as well as collecting test
metrics and analyzing the test results.
 These tests consisted of 2 or 3 senders and one receiver.
Figure 1shows the topology for these tests. The traffic con-
sisted of a mix of 1MB and 10KB RPCs. The primary value
of these tests is to verify the expected behavior of DCTCP:
reduction of packet losses, decrease of tail latency and in-
creased fairness between 1MB and 10KB RPCs.

Inter-Rack Tests
 The topology of the inter-rack tests is shown in Figure 2.
It consisted of 3 full racks of storage nodes and 3 full racks
of worked nodes. The worker nodes read data from the
storage nodes and do a small amount of processing. In
addition, there is some amount of traffic between the worker
nodes and also between the storage nodes. While the
applications where actual production applications, the load
was artificial in order to fully saturate the links between the
work and storage racks.

Intra-Rack Tests Results
As mentioned earlier, these tests consisted of multiple 1MB
and 10KB concurrent RPCs. Through this testing we
uncovered the following issues:

• Unfairness between senders, regardless of
congestion control used

• Unfairness between flows when using ECN
• High tail latencies when using DCTCP

 Causes and fixes of these issues are discussed in the
following sub-sections.

Unfairness Between Senders, Regardless of CC
 We noted unfairness when 3 senders send to a fourth one
(see Figure 1). Senders 1 and 2 would each get 25% of the
bandwidth, while Sender 3 would get 50% of the bandwidth.
The cause turned out to be due to a design issue on the
switch. The switch has 2 output buffers, with half of the
input ports using one buffer and the other half using the
other buffer. The switch round-robins between buffers when
sending packets out of the output ports.

 As Figure 3 shows, Servers 1 and 2 were using buffer A,
while Server 3 was using buffer B causing the unfairness.
To remove this issue, we only chose servers using buffer A
for our testing.

Unfairness Between Flows When Using ECN
 With only two flows, the first flow would get 23Gbps and
the second one would only get 0.5Gbps of bandwidth (we
were using a 25Gbps NIC). We wrote a tool to analyze pcaps
that could show per RTT metrics such as throughput,
duration, number of packets sent as well as per packet
information. This showed that the RTTs of the second flow
were bimodal: either around 60us or 1.2ms and that the
cwnd was small, less than 20.

 Figure 4 shows some of the output from one test run. The
numbers on the second column indicate the flow number (2)
followed by the RTT number (separated by a period). Note
that an RTT starts when a packet is sent (either the first data
packet or the first after a previous RTT ends) and ends when
its ACK is received. The third column shows the time when
the RTT finished (starting with time 0 when the SYN packet
is sent) and its duration. The fourth column shows the
number of bytes that were sent during the RTT (usually

Figure 1: Topology for intra-rack tests

Figure 2: Topology for inter-rack tests

Figure 3: Switch architecture

cwnd) and the final column shows the rate achieved during
the RTT (out bytes divided by RTT).

 After further analysis, it turned out the cause was due to
coalescing values used by a new feature of the NIC firmware
that were not shown in our version of the ethtool. We fixed
the issue by updating the firmware and disabling the feature.

High Tail Latencies When Using DCTCP
 After fixing the previous issues and comparing Cubic and
DCTCP behavior we noticed that the 99 and 99.9% latencies
were much higher for DCTCP. These are shown in Figure 5.

 After analyzing pcaps using our tool and looking at the
Linux network stack source code we discovered the
following issues:

• RTOs caused by the receive sending a duplicate
ACK instead of ACKing the last (and only) packet
sent.

• The receiver delaying ACKs when the sender had
a cwnd of 1, so the sender paused for the duration
of the delayed ACK (40ms)

 It turned out that there some old bugs in the DCTCP and
ECN handling code that were triggered by a patch in 2015
(I.e. this issue has been around for about 3 years). These
bugs are now fixed thanks to patches from Yuchung Cheng,
Neal Cardwell and me.
 With these fixes, the tail latencies of DCTCP now look
much better and are shown in Figure 6. Note that the 10KB
latencies are much better (5 to 10) and that the reason that
the 1MB latencies are now larger than Cubic’s is because
DCTCP is allowing the 10KB RPC to get much better
throughput (so there is less bandwidth for the 1MB RPC).
That is, it is something positive not a negative. DCTCP
solved the unfairness between RPC sizes that occurs with
Cubic and is caused by Cubic creating standing queues
which increase RTTs.

Inter-Rack Tests Results
These tests used 4 to 6 fully populated racks (see Figure 2)
and consisted of worker nodes reading from the storage
nodes using an artificial load in order to increase utilization
of the network. We started by using the full 3 racks of
workers which could only saturate up to 70% of the FSW
links going to the worker racks. These results are shown in
Figure 7.

 DCTCP has fewer discards (300x) and retransmissions
with only a small increase in CPU usage (1%) on the worker
nodes as compared to Cubic. Note that the maximum link
utilization (from the FSW switches to the worker racks) was
only 70% on average.

 In order to increase network load, we only used 2 worker
racks in the next tests. This increased maximum link
utilization to 99% and switch discards under Cubic
increased by almost 500x. In contrast, DCTCP has 1000x
less discards and 500x less retransmissions. However, CPU
utilization increased on both the worker (14%) and storage
nodes (4%). These results are shown in Figure 8 below.

 Note that 63.7% of the packets received by the worker
nodes are ECN marked as having experienced congestion.

 For the final tests we only used one worker rack, further
increasing network congestion. This resulted in small
increases in Cubic discards and retransmissions, but much

Figure 4: RTT Analysis of Slow Flow

Figure 5: High DCTCP Tail Latencies

Figure 6: Fixed DCTCP Tail Latencies

Figure 7: Results when using 3 worker racks

Figure 8: Results when using 2 worker racks

larger increases in DCTCP discards and retransmissions.
Even though DCTCP is very effective in decreasing
discards, there is only so much it can do if the network load
is too high. These results are shown in Figure 9 below.

 CPU overheads decreased while percent of ECN
congestion marked packets increased to 73%.

 The likely cause of CPU increase is the decrease in packet
coalescing due to smaller congestion windows (cwnd) at the
senders (i.e. smaller TSO/GSO packets) and at the receivers
due to not being to coalesce packets with ECN congestion
markings with packets without ECN congestion markings.
In addition, the DCTCP receiver also sends more ACK
packets further increasing the load on the sender.

 It is not clear how much of an issue this will be on
production traffic since it is better behaved than the artificial
load we used in these tests.

Conclusions

Smaller, intra-rack, tests are very important in helping
discover and fix any issues may occur due to software bugs
or experimental conditions. Our tests also indicate that we,
the Linux kernel community, have we increase our test
coverage. It is surprising that we had bugs that affected
DCTCP tail latencies for more than 3 years.

 Intra-rack and inter-rack tests show conclusively that
DCTCP is very good at reducing packet discards and
improving tail latencies. They also show that DCTCP
improves the RPC latencies and goodput of smaller RPCs as
compared to Cubic.

 Futher work is needed to determine if CPU overheads
will be an issue with production workloads. If so, we must
decrease these overheads.

References

1. A. Baiocchi, A. Castellani, and F. Vacirca. YeAH-
TCP: Yet Another Highspeed TCP. In proc.

International Workshop on Protocols for Fast
Long-Distance Networks, Marina del Rey,
California, USA, February 2007.

2. Brakmo, L. S., Peterson, L.L. 1995. TCP Vegas:
end-to-end congestion avoidance on a global
Internet. IEEE Journal on Selected Areas in
Communications13(8): 1465-1480.

3. Brakmo, L. 2010. TCP-NV: Congestion Avoidance
for Data Centers. Linux Plumbers Conference,
Massachusetts, U.S.A.

4. Brakmo, L. 2017. Network Testing with Netesto.
Netdev 2.1 Technical Conference, Montreal,
Canada.

5. C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, R.
Wang, "TCP Westwood: end-to-end congestion
control for wired/wireless networks", Wireless
Netw. J., vol. 8, pp. 467-479, 2002.

6. D. Leith and R. Shorten. H-TCP Protocol for High-
Speed Long Distance Networks. In proc.
International Workshop on Protocols for Fast
Long-Distance Networks, Argonne, Illinois, USA,
February 2004.

7. Floyd, S. 2003. HighSpeed TCP for Large
Congestion Windows. IETF RFC 3649.

8. Jacobson, V. 1988. Congestion avoidance and
control. ACM SIGCOMM Computer
Communication Review 18(4): 314-329.

9. Kelly, t. "Scalable TCP: improving performance in
highspeed wide area networks", Comput.
Commun. Rev., vol. 32, no. 2, Apr. 2003.

10. Lisong Xu, Khaled Harfoush, and Injong
Rhee, Binary Increase Congestion Control for Fast,
Long Distance Networks, Infocom, IEEE, 2004

11. Mario Hock, Roland Bless, Martina Zitterbart,
"Experimental Evaluation
of BBR Congestion Control", IEEE ICNP 2017,
October 2017

12. Mohammad Alizadeh , Albert Greenberg , David
A. Maltz , Jitendra Padhye , Parveen Patel , Balaji
Prabhakar , Sudipta Sengupta , Murari Sridharan,
Data center TCP (DCTCP), Proceedings of the
ACM SIGCOMM 2010 conference, August 30-
September 03, 2010, New Delhi, India

13. Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, Van Jacobson, “BBR:
Congestion Based Congestion Control,”
Communications of the ACM, Vol. 60 No. 2, Pages
58-66.
(https://cacm.acm.org/magazines/2017/2/212428-
bbr-congestion-based-congestion-control/fulltext)

14. Sangtae Ha, Injong Rhee and Lisong Xu, CUBIC:
A New TCP-Friendly High-Speed TCP
Variant, ACM SIGOPS Operating System Review,
Volume 42, Issue 5, July 2008, Page(s):64-74,
2008.

Figure 9: Results when using only 1 worker rack

