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Abstract 
In this paper we describe our preliminary experiences eval-
uating DCTCP[12] for use in our data centers. Our testing 
corroborates results from other groups indicating that 
DCTCP is very effective in decreasing packet losses and re-
transmissions. In addition, DCTCP increases fairness be-
tween RPC flows of different sizes. 
 We also discovered issues in our NIC’s firmware and the 
DCTCP implementation in the Linux kernel that affected 
DCTCP performance. 
 Finally, we discovered that DCTCP can increase CPU 
utilization under some conditions. 
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 Introduction 
The basic problem that a congestion algorithm attempts to 
solve is how to fully, and fairly, utilize the available band-
width in a connection’s path. Work on this problem has been 
going on for more than 30 years and still continues to this 
date. 
 Congestion control was added to TCP in 1988 by Van 
Jacobson[8] to deal with congestion collapse, a network 
condition where most of the bandwidth ends up being 
wasted by packets that are later retransmitted. Since then 
many new congestion control algorithms have been devel-
oped and added to Linux’s repertoire of TCP flavors 
[1,2,3,5,6,7,9,10,12,13,14]. 
  Most of these congestion algorithms depend on packet 
losses to detect network congestion. As a result, they fill 
queues along bottleneck links resulting in standing queues 
(non-dissipating queues) increasing latency.  

These standing queues also introduce unfairness be-
tween RPCs of different lengths. When the RTT increases 
from tens of micro-seconds to 1 millisecond, a 10KB RPC 
can only do 80Mbps at best, while a 1MB RPC could theo-
retically go up to 8Gbps. 

Furthermore, loss-based congestion control algorithms 
increase tail latency as a result of delays in detecting packet 
losses. Rather than preventing congestion, loss-based con-
gestion control algorithms need to periodically create packet 
losses to detect that the available bandwidth is fully utilized. 

In contrast, congestion avoidance algorithms try to de-
tect congestion before losses occur. Most congestion avoid-

ance algorithms try to detect congestion by detecting grow-
ing queues, an early stage of congestion. Most, like TCP-
Vegas[2] and BBR[13,11] use the RTT to detect queue 
growth. Others, like DCTCP[12] use explicit congestion 
signals from switches and routers.  

ECN (Explicit Congestion Notification) is a framework 
allowing switches to share congestion signals to senders and 
receivers. IP headers use 2 bits for sharing ECN information. 
If none of the bits are set, then the flow does not support 
ECN and switches will not mark the packets. When only one 
bit is set, then the flow supports ECN signals and no con-
gestion has been encountered. Finally, when both bits are 
set, then the flow supports ECN and the packet has encoun-
tered congestion. 

Congestion is detected through queue sizes. In the sim-
plest case, when a packet arrives, if the queue used to tem-
porarily store the packet is larger than some threshold, then 
the packet is marked as having experienced congestion. This 
signal then arrives at the receiver, and the receiver then 
needs to notify the sender so it can adjust its rate appropri-
ately. For TCP flows, the signal is sent back on the TCP 
header of the ACK packet. 

The standard (pre-DCTCP) response of TCP is to reduce 
its congestion window (cwnd) as if a packet had been 
dropped. That is, Reno would reduce its cwnd by 50%. This 
is a very aggressive reduction that can lead to link underuti-
lization in some networks. In addition, the standard response 
does not differentiate between transient (very short lived) 
and standing (long lived) congestion. For example, conges-
tion events (queues larger than a given threshold) that last 
less than an RTT would still result in reducing cwnd. 

In contrast, DCTCP employs a mechanism where the 
cwnd is reduced proportionally to the level of congestion. It 
achieves this by tracking the percentage of bytes per RTT 
that encounter congestion and reducing the cwnd propor-
tionally. Thus if 100% of the bytes encounter congestion, 
then DCTCP would reduce its cwnd by 50%. Whereas if 
only 50% of the packets encounter congestion, then the 
cwnd would only be reduced by 25%. 

In practice, DCTCP uses a moving average in order to 
deal with transient congestion. For example, if 100% of the 
bytes in an RTT encounter congestion, but there was no con-
gestion in previous RTTs, then the cwnd would only be re-
duced by 1/32 instead of ½. 
 
 



Overview 
In order to determine the suitability of deploying DCTCP in 
our data centers, we ran various tests. We started with sim-
ple 3 to 4 server intra-rack tests and finished with full rack 
tests consisting of 4 to 6 racks. 
 
Intra-Rack Tests 
 For the 3 to 4 server within rack tests, we used 
Netesto[4] for the tests. Netesto (Network Test Toolkit) is a 
framework for running network tests which simplifies the 
process of running complex tests as well as collecting test 
metrics and analyzing the test results. 
 These tests consisted of 2 or 3 senders and one receiver. 
Figure 1shows the topology for these tests. The traffic con-
sisted of a mix of 1MB and 10KB RPCs. The primary value 
of these tests is to verify the expected behavior of DCTCP: 
reduction of packet losses, decrease of tail latency and in-
creased fairness between 1MB and 10KB RPCs. 
 

 
 
 
Inter-Rack Tests 
 The topology of the inter-rack tests is shown in Figure 2. 
It consisted of 3 full racks of storage nodes and 3 full racks 
of worked nodes. The worker nodes read data from the 
storage nodes and do a small amount of processing. In 
addition, there is some amount of traffic between the worker 
nodes and also between the storage nodes. While the 
applications where actual production applications, the load 
was artificial in order to fully saturate the links between the 
work and storage racks. 

 
 
 

Intra-Rack Tests Results 
As mentioned earlier, these tests consisted of multiple 1MB 
and 10KB concurrent RPCs. Through this testing we 
uncovered the following issues: 

• Unfairness between senders, regardless of 
congestion control used 

• Unfairness between flows when using ECN 
• High tail latencies when using DCTCP 

 
 Causes and fixes of these issues are discussed in the 
following sub-sections. 
 
Unfairness Between Senders, Regardless of CC 
 We noted unfairness when 3 senders send to a fourth one 
(see Figure 1). Senders 1 and 2 would each get 25% of the 
bandwidth, while Sender 3 would get 50% of the bandwidth. 
The cause turned out to be due to a design issue on the 
switch. The switch has 2 output buffers, with half of the 
input ports using one buffer and the other half using the 
other buffer. The switch round-robins between buffers when 
sending packets out of the output ports. 

 
  As Figure 3 shows, Servers 1 and 2 were using buffer A, 
while Server 3 was using buffer B causing the unfairness. 
To remove this issue, we only chose servers using buffer A 
for our testing.  
 
Unfairness Between Flows When Using ECN 
 With only two flows, the first flow would get 23Gbps and 
the second one would only get 0.5Gbps of bandwidth (we 
were using a 25Gbps NIC). We wrote a tool to analyze pcaps 
that could show per RTT metrics such as throughput, 
duration, number of packets sent as well as per packet 
information. This showed that the RTTs of the second flow 
were bimodal: either around 60us or 1.2ms and that the 
cwnd was small, less than 20. 
 
 Figure 4 shows some of the output from one test run. The 
numbers on the second column indicate the flow number (2) 
followed by the RTT number (separated by a period). Note 
that an RTT starts when a packet is sent (either the first data 
packet or the first after a previous RTT ends) and ends when 
its ACK is received. The third column shows the time when 
the RTT finished (starting with time 0 when the SYN packet 
is sent) and its duration. The fourth column shows the 
number of bytes that were sent during the RTT (usually 

Figure 1: Topology for intra-rack tests 

Figure 2: Topology for inter-rack tests 

Figure 3: Switch architecture 



cwnd) and the final column shows the rate achieved during 
the RTT (out bytes divided by RTT). 
 

 
 After further analysis, it turned out the cause was due to 
coalescing values used by a new feature of the NIC firmware 
that were not shown in our version of the ethtool. We fixed 
the issue by updating the firmware and disabling the feature. 
 
High Tail Latencies When Using DCTCP 
 After fixing the previous issues and comparing Cubic and 
DCTCP behavior we noticed that the 99 and 99.9% latencies 
were much higher for DCTCP. These are shown in Figure 5. 
 

 
 After analyzing pcaps using our tool and looking at the 
Linux network stack source code we discovered the 
following issues: 

• RTOs caused by the receive sending a duplicate 
ACK instead of ACKing the last (and only) packet 
sent. 

• The receiver delaying ACKs when the sender had 
a cwnd of 1, so the sender paused for the duration 
of the delayed ACK (40ms) 

 
 It turned out that there some old bugs in the DCTCP and 
ECN handling code that were triggered by a patch in 2015 
(I.e. this issue has been around for about 3 years). These 
bugs are now fixed thanks to patches from Yuchung Cheng, 
Neal Cardwell and me. 
 With these fixes, the tail latencies of DCTCP now look 
much better and are shown in Figure 6. Note that the 10KB 
latencies are much better (5 to 10) and that the reason that 
the 1MB latencies are now larger than Cubic’s is because 
DCTCP is allowing the 10KB RPC to get much better 
throughput (so there is less bandwidth for the 1MB RPC). 
That is, it is something positive not a negative. DCTCP 
solved the unfairness between RPC sizes that occurs with 
Cubic and is caused by Cubic creating standing queues 
which increase RTTs. 

 
 

Inter-Rack Tests Results 
These tests used 4 to 6 fully populated racks (see Figure 2) 
and consisted of worker nodes reading from the storage 
nodes using an artificial load in order to increase utilization 
of the network. We started by using the full 3 racks of 
workers which could only saturate up to 70% of the FSW 
links going to the worker racks. These results are shown in 
Figure 7. 
 

 
 DCTCP has fewer discards (300x) and retransmissions 
with only a small increase in CPU usage (1%) on the worker 
nodes as compared to Cubic. Note that the maximum link 
utilization (from the FSW switches to the worker racks) was 
only 70% on average. 
 
 In order to increase network load, we only used 2 worker 
racks in the next tests. This increased maximum link 
utilization to 99% and switch discards under Cubic 
increased by almost 500x. In contrast, DCTCP has 1000x 
less discards and 500x less retransmissions. However, CPU 
utilization increased on both the worker (14%) and storage 
nodes (4%). These results are shown in Figure 8 below. 

 
 Note that 63.7% of the packets received by the worker 
nodes are ECN marked as having experienced congestion. 
 
 For the final tests we only used one worker rack, further 
increasing network congestion. This resulted in small 
increases in Cubic discards and retransmissions, but much 

Figure 4: RTT Analysis of Slow Flow 

Figure 5: High DCTCP Tail Latencies 

Figure 6: Fixed DCTCP Tail Latencies 

Figure 7: Results when using 3 worker racks 

Figure 8: Results when using 2 worker racks 



larger increases in DCTCP discards and retransmissions. 
Even though DCTCP is very effective in decreasing 
discards, there is only so much it can do if the network load 
is too high. These results are shown in Figure 9 below. 
 

 
 
 CPU overheads decreased while percent of ECN 
congestion marked packets increased to 73%. 
 
 The likely cause of CPU increase is the decrease in packet 
coalescing due to smaller congestion windows (cwnd) at the 
senders (i.e. smaller TSO/GSO packets) and at the receivers 
due to not being to coalesce packets with ECN congestion 
markings with packets without ECN congestion markings. 
In addition, the DCTCP receiver also sends more ACK 
packets further increasing the load on the sender. 
 
 It is not clear how much of an issue this will be on 
production traffic since it is better behaved than the artificial 
load we used in these tests. 
 
 

Conclusions 
 
Smaller, intra-rack, tests are very important in helping 
discover and fix any issues may occur due to software bugs 
or experimental conditions. Our tests also indicate that we, 
the Linux kernel community, have we increase our test 
coverage. It is surprising that we had bugs that affected 
DCTCP tail latencies for more than 3 years. 
 
 Intra-rack and inter-rack tests show conclusively that 
DCTCP is very good at reducing packet discards and 
improving tail latencies. They also show that DCTCP 
improves the RPC latencies and goodput of smaller RPCs as 
compared to Cubic. 
 
 Futher work is needed to determine if CPU overheads 
will be an issue with production workloads. If so, we must 
decrease these overheads. 
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