
EXPERIENCES EVALUATING DCTCP

Lawrence Brakmo, Boris Burkov, Greg 
Leclercq and Murat Mugan

Facebook



INTRODUCTION

• Standard TCP congestion control, which only reacts to 
packet losses has many problems
• Can result in standing queues (queues that do not dissipate)

• Increases tail latencies due to loss recovery times
• Penalizes smaller RPC flows

• Congestion avoidance, which reacts to increasing queues, 
have been proposed as a solution. Of these, DCTCP is one 
of the most commonly used in Data Centers.



ECN

• ECN (Early congestion notification) marks packets that 
arrive when a queue size threshold has been exceeded
• Original response to an ECN marking was to react as if the 

packet had been dropped: reduce cwnd by 50% (Reno)
• In many network topologies this response is too aggressive 

and can result in link under-utilization
• One problem is that it was not differentiating between 

transient and standing congestion



DCTCP

• DCTCP also uses ECN markings to detect queue build-up
• However, instead of always reacting in the same way (50% 

reduction of cwnd) DCTCP reacts to the level of 
congestion.
• Uses the percent of packets marked per RTT to determine 

response
• If all packets marked, reduce cwnd by 50%

• To deal with transient congestion, the response is based on 
a moving average



OVERVIEW

•We describe our experiences evaluating DCTCP
• Initial tests were within a rack using Netesto* to create 

traffic and capture metrics
• This uncovered various issues

• 6 rack test using DC services
• Using an artificial load to fully saturate network

• Corroborated higher CPU utilization seen in rack tests

* Network Testing Toolkit



ISSUES

• Issues seen in rack testing
• Unfairness between senders regardless of TCP congestion control
• Unfairness between flows (even with only one sender) when 

using ECN
• High tail latencies when using DCTCP

• Issues seen in 6-rack tests
• Higher CPU utilization with DCTCP



ISSUE: UNFAIRNESS BETWEEN SERVERS

• Noticed unfairness in experiment where 3 servers send to a 4th

one
• 2 servers would get 25% of bandwidth each
• 1 server would get 50% of bandwidth
• Turned out to be due to the switch design
• Switch uses 2 buffers for each output port
• Input ports are assigned to one of the output buffers
• 2 servers came on input ports assigned to buffer A
• 1 server came to input port assigned to buffer B
• Switch round-robins between buffers



SWITCH ARCHITECTURE

• 2 Servers use Buffer A
• 1 Server uses Buffer B
• Output port round-robins between output buffers

Buffer 
A

Buffer 
B

Server 1

Server 2

Server 3

Server 4



ISSUE: UNFAIRNESS BETWEEN FLOWS WITH ECN

•With only 2 flows, one flow would get much higher link 
utilization (23Gbps vs. 0.5 Gbps)
•Wrote a tool to analyze pcaps. For each flow it could show
• Per RTT metrics

• Per packet details

• Discovered that one flow’s RTTs were bimodal: either 60us 
or 1.3ms (cwnd was small < 20)



BIMODAL RTT DISTRIBUITION

Cause: NIC firmware using large coalescing values and 1ms timer



ISSUE: HIGH TAIL LATENCIES WITH DCTCP

• 1MB and 10KB RPCs had high (as compared to Cubic) tail 
latencies

Cubic Latencies DCTCP Latencies DCTCP (fixed) Latencies

99% 99.9% 99% 99.9% 99% 99.9%

1-MB RPCs 2.6ms 5.5ms 43ms 208ms 5.8ms 6.9ms

10-KB RPCs 1.1ms 1.3ms 53ms 212ms 146us 203us



ISSUE: HIGH TAIL LATENCIES WITH DCTCP (2)

• There were 2 issues increasing tail latencies
• RTOs caused by the receiver sending a dup ACK and not ACKing

the last (and only) packet sent

• Delaying ACKs when the sender has a cwnd of 1, so everything 
pauses for the duration of the delayed ACK

• Triggered by kernel patches in 2015

• Fixes are now upstream (patches by Yuchung Cheng, Neal
Cardwell and Lawrence Brakmo).



6-RACK TESTS

• 3 racks are store servers

• 1-3 racks (workers) read data from store servers

• Cross traffic between workers

FSW

FSW

FSW

FSW

4x100Gbps4x100Gbps

Storage RacksWorker Racks



3 WORKER RACKS (LESS CONGESTION)

Cubic DCTCP

FSW to Worker Max Link Util % 69.9 69.8

FSW Discards (bits) 89M 236K (0.3%)

Worker rack discards (bits) 417M 0

Storage Retransmits 0.020 0.000

Worker Retransmits 0.173 0.078

Storage CPU (%) X X

Worker CPU (%) Y Y + 1%

Storage ECN CE Marked (%) 6.5

Worker ECN CE Marked (%) 12.8



2 WORKER RACKS (MORE CONGESTION)

Cubic DCTCP

FSW to Worker Max Link Util % 99.1 98.7

FSW Discards (bits) 160B 157M (0.1%)

Worker rack discards (bits) 2.2B 0

Storage Retransmits 0.590 0.001

Worker Retransmits 0.376 0.035

Storage CPU (%) X X + 14%

Worker CPU (%) Y Y + 4%

Storage ECN CE Marked (%) 5.5

Worker ECN CE Marked (%) 63.7



1 WORKER RACKS (VERY CONGESTED)

Cubic DCTCP

FSW to Worker Max Link Util % 99.9 98.1

FSW Discards (bits) 235B 19B (8.1%)

Worker rack discards (bits) 1.1B 0

Storage Retransmits 1.020 0.125

Worker Retransmits 0.620 0.125

Storage CPU (%) X X + 10%

Worker CPU (%) Y Y + 3%

Storage ECN CE Marked (%) 18

Worker ECN CE Marked (%) 73



RESULT SUMMARY

• Fewer switch discards for DCTCP

• 10x to 1000x fewer depending on load

• Higher CPU utilization for DCTCP at high link utilization

• At 70% link utilization, CPU use is similar

• At 99% link utilization, DCTCP uses up to 14% more CPU

• Depends on the percent of ECN congestion markings

• Not clear whether this is an issue on production traffic



ISSUE: HIGH CPU UTILIZATION

• CPU Utilization increases as link utilization increased

• But then decreases as load increased further

• Seems to be caused by smaller packet coalescence

• LRO/GRO cannot coalesce packets with different ECN values

• => more packets handled by receiver

• => more ACK packets handled by sender

• Worst case scenario is every other packet (50%) has ECN
congestion marking

• Not sure how much of an issue on production workloads



FUTURE WORK

• Explore techniques for reducing CPU overhead when using 
DCTCP
• Run cluster wide experiments with production workloads



SUMMARY

• Need better network testing for the kernel
• I.e. DCTCP bug triggered by patch in 2015

• DCTCP reduces packet drops and retransmissions 
significantly (up to 1000x)
• DCTCP increases fairness between RPC sizes
• DCTCP increases CPU utilization due to reduced packet 

coalescing


