

EXPERIENCES EVALUATING DCTCP

Lawrence Brakmo, Boris Burkov, Greg Leclercq and Murat Mugan Facebook

INTRODUCTION

- Standard TCP congestion control, which only reacts to packet losses has many problems
 - Can result in standing queues (queues that do not dissipate)
 - Increases tail latencies due to loss recovery times
 - Penalizes smaller RPC flows
- Congestion avoidance, which reacts to increasing queues, have been proposed as a solution. Of these, DCTCP is one of the most commonly used in Data Centers.

ECN

- ECN (Early congestion notification) marks packets that arrive when a queue size threshold has been exceeded
- Original response to an ECN marking was to react as if the packet had been dropped: reduce cwnd by 50% (Reno)
- In many network topologies this response is too aggressive and can result in link under-utilization
- One problem is that it was not differentiating between transient and standing congestion

DCTCP

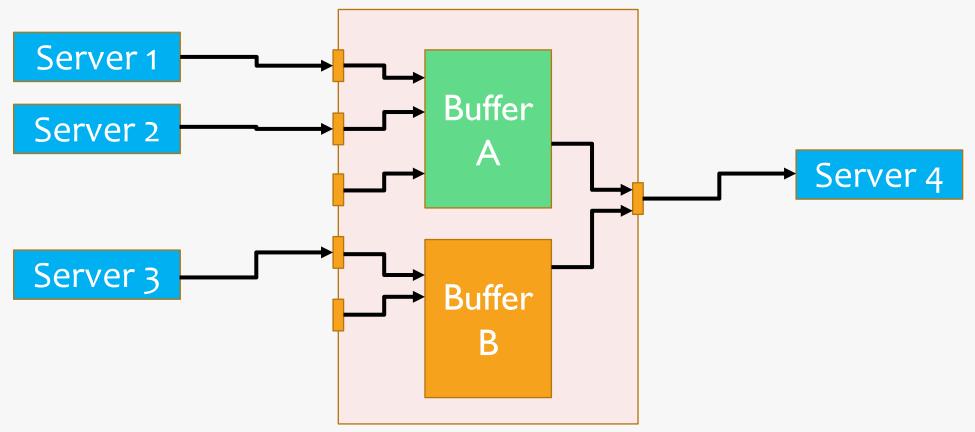
- DCTCP also uses ECN markings to detect queue build-up
- However, instead of always reacting in the same way (50% reduction of cwnd) DCTCP reacts to the level of congestion.
- Uses the percent of packets marked per RTT to determine response
 - If all packets marked, reduce cwnd by 50%
- To deal with transient congestion, the response is based on a moving average

OVERVIEW

- We describe our experiences evaluating DCTCP
- Initial tests were within a rack using Netesto* to create traffic and capture metrics
 - This uncovered various issues
- 6 rack test using DC services
 - Using an artificial load to fully saturate network
 - Corroborated higher CPU utilization seen in rack tests

* Network Testing Toolkit

ISSUES


- Issues seen in rack testing
 - Unfairness between senders regardless of TCP congestion control
 - Unfairness between flows (even with only one sender) when using ECN
 - High tail latencies when using DCTCP
- Issues seen in 6-rack tests
 - Higher CPU utilization with DCTCP

ISSUE: UNFAIRNESS BETWEEN SERVERS

- Noticed unfairness in experiment where 3 servers send to a 4th one
- 2 servers would get 25% of bandwidth each
- 1 server would get 50% of bandwidth
- Turned out to be due to the switch design
 - Switch uses 2 buffers for each output port
 - Input ports are assigned to one of the output buffers
 - 2 servers came on input ports assigned to buffer A
 - 1 server came to input port assigned to buffer B
 - Switch round-robins between buffers

SWITCH ARCHITECTURE

- 2 Servers use Buffer A
- 1 Server uses Buffer B
- Output port round-robins between output buffers

ISSUE: UNFAIRNESS BETWEEN FLOWS WITH ECN

- With only 2 flows, one flow would get much higher link utilization (23Gbps vs. 0.5 Gbps)
- Wrote a tool to analyze pcaps. For each flow it could show
 - Per RTT metrics
 - Per packet details
- Discovered that one flow's RTTs were bimodal: either 60us or 1.3ms (cwnd was small < 20)

BIMODAL RTT DISTRIBUITION

RTT	2.1	0.020255(1.3ms)	out: 14.3KB rate: 85.83 Mbp)S
RTT	2.2	0.021586(1.3ms)	out: 28.6KB rate:173.88 Mbp	s
RTT	2.3	0.022900(40us)	out: 30.0KB rate: 5.85 Gbp	s
RTT	2.4	0.022941(1.3ms)	out: 2.9KB rate: 17.35 Mbp	s
RTT	2.5	0.024258(57us)	out: 31.4KB rate: 4.41 Gbp	s
RTT	2.6	0.024315(1.3ms)	out: 1.4KB rate: 8.72 Mbp	s
RTT	2.7	0.025625(76us)	out: 32.8KB rate: 3.46 Gbp	s
RTT	2.8	0.025701(1.2ms)	out: 32.8KB rate:210.71 Mbp	s
RTT	2.9	0.026948(85us)	out: 35.7KB rate: 3.36 Gbp	s
RTT	2.10	0.027033(1.3ms)	out: 30.0KB rate:187.72 Mbp	s
RTT	2.11	0.028311(1.4ms)	out: 38.6KB rate:222.87 Mbp	s
RTT	2.12	0.029695(67us)	out: 41.4KB rate: 4.94 Gbp	s

Cause: NIC firmware using large coalescing values and 1ms timer

TCP@

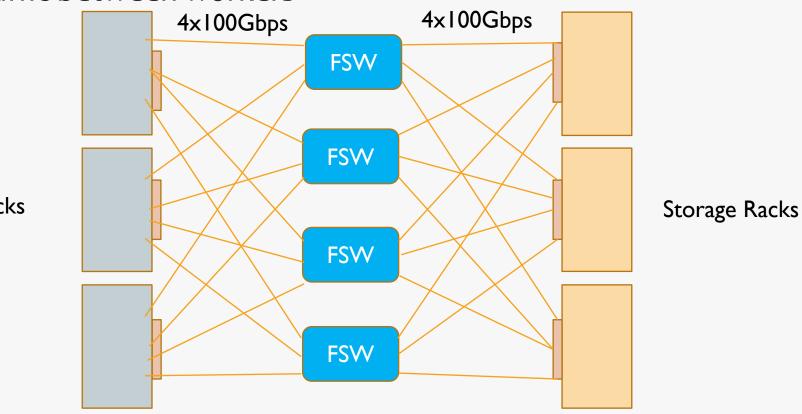
Fb

ISSUE: HIGH TAIL LATENCIES WITH DCTCP

 1MB and 10KB RPCs had high (as compared to Cubic) tail latencies

	Cubic Latencies		DCTCP Latencies		DCTCP (fixed) Latencies	
	99%	99.9%	99%	99.9%	99%	99.9%
1-MB RPCs	2.6ms	5.5ms	43ms	208ms	5.8ms	6.9ms
10-KB RPCs	1 . 1ms	1.3ms	53ms	212ms	146us	203us

ISSUE: HIGH TAIL LATENCIES WITH DCTCP (2)


- There were 2 issues increasing tail latencies
 - RTOs caused by the receiver sending a dup ACK and not ACKing the last (and only) packet sent
 - Delaying ACKs when the sender has a cwnd of 1, so everything pauses for the duration of the delayed ACK

- Triggered by kernel patches in 2015
- Fixes are now upstream (patches by Yuchung Cheng, Neal Cardwell and Lawrence Brakmo).

6-RACK TESTS

- 3 racks are store servers
- 1-3 racks (workers) read data from store servers
- Cross traffic between workers

TCP@

b

Worker Racks

3 WORKER RACKS (LESS CONGESTION)

	Cubic	DCTCP
FSW to Worker Max Link Util %	69.9	69.8
FSW Discards (bits)	89M	236K (0.3%)
Worker rack discards (bits)	417M	0
Storage Retransmits	0.020	0.000
Worker Retransmits	0.173	0.078
Storage CPU (%)	Х	Х
Worker CPU (%)	Y	Y + 1%
Storage ECN CE Marked (%)		6.5
Worker ECN CE Marked (%)		12.8

2 WORKER RACKS (MORE CONGESTION)

	Cubic	DCTCP
FSW to Worker Max Link Util %	99.1	98.7
FSW Discards (bits)	160B	157M (0.1%)
Worker rack discards (bits)	2 . 2B	0
Storage Retransmits	0.590	0.001
Worker Retransmits	0.376	0.035
Storage CPU (%)	Х	X + 14%
Worker CPU (%)	Y	Y + 4%
Storage ECN CE Marked (%)		5.5
Worker ECN CE Marked (%)		63.7

1 WORKER RACKS (VERY CONGESTED)

	Cubic	DCTCP
FSW to Worker Max Link Util %	99.9	98.1
FSW Discards (bits)	235B	19B (8.1%)
Worker rack discards (bits)	1.1B	0
Storage Retransmits	1.020	0.125
Worker Retransmits	0.620	0.125
Storage CPU (%)	Х	X + 10%
Worker CPU (%)	Y	Y + 3%
Storage ECN CE Marked (%)		18
Worker ECN CE Marked (%)		73

RESULT SUMMARY

- Fewer switch discards for DCTCP
 - 10x to 1000x fewer depending on load
- Higher CPU utilization for DCTCP at high link utilization
 - At 70% link utilization, CPU use is similar
 - At 99% link utilization, DCTCP uses up to 14% more CPU
 - Depends on the percent of ECN congestion markings
 - Not clear whether this is an issue on production traffic

ISSUE: HIGH CPU UTILIZATION

- CPU Utilization increases as link utilization increased
 - But then decreases as load increased further
- Seems to be caused by smaller packet coalescence
 - LRO/GRO cannot coalesce packets with different ECN values
 - => more packets handled by receiver
 - => more ACK packets handled by sender
 - Worst case scenario is every other packet (50%) has ECN congestion marking
- Not sure how much of an issue on production workloads

FUTURE WORK

- Explore techniques for reducing CPU overhead when using DCTCP
- Run cluster wide experiments with production workloads

SUMMARY

- Need better network testing for the kernel
 - I.e. DCTCP bug triggered by patch in 2015
- DCTCP reduces packet drops and retransmissions significantly (up to 1000x)
- DCTCP increases fairness between RPC sizes
- DCTCP increases CPU utilization due to reduced packet coalescing

