EXPERIENCES EVALUATING DCTCP

Lawrence Brakmo, Boris Burkov, Greg
Leclercq and Murat Mugan

Facebook

INTRODUCTION

Standard TCP congestion control, which only reacts to
packet losses has many problems

Can result in standing queues (queues that do not dissipate)
Increases tail latencies due to loss recovery times

Penalizes smaller RPC flows

Congestion avoidance, which reacts to increasing queues,
have been proposed as a solution. Of these, DCTCP is one
of the most commonly used in Data Centers.

TCP@fb

ECN

ECN (Early congestion notification) marks packets that
arrive when a queue size threshold has been exceeded

Original response to an ECN marking was to react as if the
packet had been dropped: reduce cwnd by 50% (Reno)

In many network topologies this response is too aggressive
and can result in link under-utilization

One problem is that it was not differentiating between
transient and standing congestion

TCP@fb

DCTCP

DCTCP also uses ECN markings to detect queue build-up

However, instead of always reacting in the same way (50%
reduction of cwnd) DCTCP reacts to the level of
congestion.

Uses the percent of packets marked per RTT to determine
response
If all packets marked, reduce cwnd by 50%

To deal with transient congestion, the response is based on
a moving average

TCP@fb

OVERVIEW

We describe our experiences evaluating DCTCP

Initial tests were within a rack using Netesto™* to create
traffic and capture metrics

This uncovered various issues

6 rack test using DC services
Using an artificial load to fully saturate network

Corroborated higher CPU utilization seen in rack tests

* Network Testing Toolkit

TCP@fb

ISSUES

Issues seen in rack testing

Unfairness between senders regardless of TCP congestion control

Unfairness between flows (even with only one sender) when
using ECN

High tail latencies when using DCTCP

Issues seen in 6-rack tests
Higher CPU utilization with DCTCP

TCP@fb

ISSUE: UNFAIRNESS BETWEEN SERVERS

Noticed unfairness in experiment where 3 servers send to a 4t

one
2 servers would get 25% of bandwidth each

1 server would get 50% of bandwidth

Turned out to be due to the switch design
Switch uses 2 buffers for each output port
Input ports are assigned to one of the output buffers
2 servers came on input ports assigned to buffer A
1 server came to input port assigned to buffer B
Switch round-robins between buffers

TCP@fb

SWITCH ARCHITECTURE

Server 1

Server 2

Server 4

Buffer
B

* 2 Servers use Buffer A
* 1 Server uses Buffer B
* Output port round-robins between output buffers TCP@fb

ISSUE: UNFAIRNESS BETWEEN FLOWS WITH ECN

With only 2 flows, one flow would get much higher link
utilization (23Gbps vs. 0.5 Gbps)

Wrote a tool to analyze pcaps. For each flow it could show
Per RTT metrics

Per packet details

Discovered that one flow’s RTTs were bimodal: either 60ous
or 1.3ms (cwnd was small < 20)

TCP@fb

BIMODAL RTT DISTRIBUITION

RTT
RTT
RTT
RTT
RTT
RTT
RTT
RTT
RTT
RTT
RTT
RTT

N N NN NN NN ININNNNN
Lo ~NOWUV S WN -

= R
N =

" 0.020255(1.3ms)

0.021586(1.3ms)
0.022900(4Qus)
0.022941(1.3ms)
0.024258(S7us)
0.024315C 1.3ms)
0.025625(76us)
0.025701(1.2ms)
0.026948(85us)
0.027033(C 1.3ms)
0.028311(1.4ms)
0.029695(67us)

out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:

14 . 3KB:
28 .6KB
30 .0KB!

2.9KB:
31.4KB:

1.4KB:
32.8KB:
32.8KB:
35.7KB
30.0KB:
38.06KB!
41 .4KB

rate
rate

rate:
rate:
rate:
rate:
rate:

rate

rate:

rate
rate

rate:

: 85.83 Mbps
:173.88 Mbps
5.85 Gbps
17.35 Mbps
4.41 Gbps
8.72 Mbps
3.46 Gbps
:210.71 Mbps
3.36 Gbps
:187.72 Mbps
:222.87 Mbps
4.94 Gbps

Cause: NIC firmware using large coalescing values and 1ms timer

TCP@fb

ISSUE: HIGH TAIL LATENCIES WITH DCTCP

* 1MB and 10KB RPCs had high (as compared to Cubic) tail
latencies

_ DCTCP Latencies DCTCP (fixed) Latencies
5.5ms 43ms

1-MB RPCs 2.6ms 208ms 5.8ms 6.9ms

10-KB RPCs 1.1ms 1.3ms 53ms 212ms 146Us 203Us

TCP@fb

ISSUE: HIGH TAIL LATENCIES WITH DCTCP (2)

There were 2 issues increasing tail latencies

RTOs caused by the receiver sending a dup ACK and not ACKing
the last (and only) packet sent

Delaying ACKs when the sender has a cwnd of 1, so everything
pauses for the duration of the delayed ACK

Triggered by kernel patches in 2015

Fixes are now upstream (patches by Yuchung Cheng, Neal
Cardwell and Lawrence Brakmo).

TCP@fb

6-RACK TESTS

* 3 racks are store servers

* 1-3 racks (workers) read data from store servers

* Cross traffic between workers

Worker Racks

4x 100Gbps 4x 100Gbps

Storage Racks

TCP@fb

3 WORKER RACKS (LESS CONGESTION)

69.8

236K (0.3%)
0

0.000

0.078

i ——ey
Storage CPU (%) X
Worker CPU (%) Y

Storage ECN CE Marked (%)
Worker ECN CE Marked (%)

Y +1%
6.5

12.8

TCP@fb

2 WORKER RACKS (MORE CONGESTION)

98.7

157M (0.1%)
0

0.001

0.035
X +14%

T e — ey
Storage CPU (%) X
Worker CPU (%) Y

Storage ECN CE Marked (%)
Worker ECN CE Marked (%)

Y + 4%
5-5
63.7

TCP@fb

1 WORKER RACKS (VERY CONGESTED)

98.1

19B (8.1%)
0

0.125
0.125

X +10%

T e — ey
Storage CPU (%) X
Worker CPU (%) Y

Storage ECN CE Marked (%)
Worker ECN CE Marked (%)

Y +3%
18
/3

TCP@fb

RESULT SUMMARY

Fewer switch discards for DCTCP
10x to 1000x fewer depending on load
Higher CPU utilization for DCTCP at high link utilization

At 70% link utilization, CPU use is similar
At 99% link utilization, DCTCP uses up to 14% more CPU

Depends on the percent of ECN congestion markings

Not clear whether this is an issue on production traffic

TCP@fb

ISSUE: HIGH CPU UTILIZATION

CPU Utilization increases as link utilization increased
But then decreases as load increased further

Seems to be caused by smaller packet coalescence
LRO/GRO cannot coalesce packets with different ECN values

=> more packets handled by receiver

=> more ACK packets handled by sender

Worst case scenario is every other packet (50%) has ECN
congestion marking

Not sure how much of an issue on production workloads

TCP@fb

FUTURE WORK

Explore techniques for reducing CPU overhead when using
DCTCP

Run cluster wide experiments with production workloads

TCP@fb

SUMMARY

Need better network testing for the kernel
l.e. DCTCP bug triggered by patch in 2015

DCTCP reduces packet drops and retransmissions
significantly (up to 1000x)

DCTCP increases fairness between RPC sizes

DCTCP increases CPU utilization due to reduced packet
coalescing

TCP@fb

