
Leveraging Kernel Tables with XDP 

David Ahern 
Cumulus Networks  

Mountain View, CA, USA 
dsahern@gmail.com 

Abstract 
XDP is a framework for running BPF programs in the NIC driver 
to allow decisions about the fate of a received packet at the 
earliest point in the Linux networking stack. For the most part the 
BPF programs rely on maps to drive packet decisions, maps that 
are managed, for example, by a user space agent. While high 
performant, this architecture has implications on how a solution is 
coded, configured, monitored and debugged. 
 An alternative approach is to make the existing kernel 
networking tables and implementations accessible by BPF 
programs. This approach allows the use of standard Linux APIs 
and tools to manage networking configuration and state while still 
achieving the higher performance provided by XDP. Allowing 
XDP programs to access kernel tables enables consistency in 
automation and monitoring across a data center – software 
forwarding, hardware offload and XDP “offload”.  
 An example of providing access to kernel tables is the recently 
added helper to allow IPv4 and IPv6 FIB and nexthop lookups in 
XDP programs. Routing suites such as FRR manage the FIB 
tables in response to configuration or link state changes, and the 
XDP packet path benefits by automatically adapting to the FIB 
updates in real time. While a huge first step, a FIB lookup alone 
is not sufficient for many networking deployments. This paper 
discusses the advantages of making kernel tables available to 
XDP programs to create a programmable packet pipeline. 
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 Introduction 
Linux is a general purpose OS with established 
implementations for networking features and APIs for  
configuring, monitoring and troubleshooting. In addition, 
Linux has a rich ecosystem of software written to those 
APIs – standard utilities for configuring networking (e.g., 
iproute2 and ifupdown2), routing suites such as FRR, 
standard monitoring tools such as net-snmp, collectd, and 
sysdig, and automation via ansible, puppet and chef. The 
standard Linux APIs allow this software ecosystem to work 
across OS versions (to various degrees based on kernel 
features) providing a consistent and stable means for 
automation and management across data center 
deployments using the Linux networking stack. 
 As a general purpose OS, Linux has a lot of features 
making it useful across a variety of use cases, however 
each of those features impacts the performance of specific 
deployments. The need for higher performance has led to 

the popularity of specialized packet processing toolkits 
such as DPDK. These frameworks enable unique, opaque 
power-sucking solutions that bypass the Linux networking 
stack and really make Linux nothing more than a boot OS 
from a networking perspective. 
 Recently, eBPF has exploded in Linux with the ability to 
install small programs at many attach points across the 
kernel enabling a lot of on-the-fly programmability. One 
specific use case of this larger eBPF picture is called XDP 
(eXpress Data Path) [1]. XDP refers to BPF programs run 
by the NIC driver on each packet received to allow 
decisions about the fate of a packet at the earliest point in 
the Linux networking stack (Figure 1). Targeted use cases 
for XDP include DDOS protections via an ACL [2], packet 
mangling and redirection as a load balancer [3], and fast 
path forwarding by updating the ethernet header and 
redirecting to a different interface [4][5]. XDP provides the 
potential for a more Linux friendly alternative to DPDK, 
allowing custom, targeted processing on packets that scales 
linearly with CPU cores [6]. 

 Figure 1. XDP Architecture. 

 The performance benefit of XDP is because programs 
are run at the earliest point in the packet processing path, 
before any allocations have been done for example. A side 
effect of this design is that BPF programs run in the XDP 
context have few kernel helpers (kernel code that can be 
invoked by a BPF program), most notably because the 



Linux networking stack operates on skbs and the XDP 
context is before an skb is allocated. This means bpf 
programs have to do their own packet parsing, processing 
and rewrites, and it drives a tendency to reimplement 
networking functionality in BPF form, be it something as 
simple as an allow/drop ACL to iptables and standard 
protocols such as bridging or layer 3 routing. 
 Furthermore, there are few options for managing 
configuration data and state, most notably through BPF 
maps or hardcoded data embedded in the program. From a 
configuration perspective BPF maps are managed by a 
userspace agent meaning the design needs to rely on 
orchestration software or it needs to track kernel state (e.g., 
via notifications) and replicate the data in the maps. 
 The end result is either a duplication of implementations 
for networking features (which means subtle differences 
between Linux forwarding and XDP forwarding) or each 
XDP solution is a unique one-off from a Linux perspective. 
 It is good to see Linux gain high performance 
improvements and innovations that enable new solutions 
such as Cilium [7] with its L4 to L7 policy enforcement, 
but for a lot of established packet processing use cases 
(e.g., firewall, NAT, forwarding), a better end goal is for 
XDP to integrate into the Linux stack in a more consistent 
way - one that maintains the bigger Linux picture and does 
not require duplicating code to leverage the new 
performance capability. If XDP means protocols are 
reimplemented in BPF with opaque data maps and users 
have to abandon their existing tools, processes and 
workflow to work with XDP solutions, then is it really any 
different than a DPDK based solution? In both cases the 
Linux networking stack is bypassed in favor of non-
standard code with non-standard management, non-
standard monitoring, non-standard troubleshooting - all 
hallmarks of the userspace bypass techniques. 
 Tools like bpftool [8] certainly help to a degree in that it 
provides a common tool for introspection of programs and 
maps, but the programs and meaning of the maps can and 
will vary by solutions, vendors and versions. Debugging or 
understanding a deployment that leverages BPF 
everywhere is unique to each instance. This creates havoc 
on a support organization when every node in the data 
center is a unique solution creating a configuration, 
monitoring and support nightmare and negating powerful 
capabilities like automation and devOps. While new 
contexts like XDP will inevitably affect the use of some 
tools (e.g., packet captures like tcpdump), it does not mean 
all tools and APIs need to be abandoned. 
 The rest of this paper focuses on one use case to drive 
home the need for better integration of XDP with existing 
Linux APIs: fast path forwarding with XDP. There are 2 
options for an XDP forwarding architecture that relies on a 
bpf program driven by maps managed by a user space 
agent: 1. the agent is managed by an SDN controller for 
example, receiving updates from a remote controller, or 2. 
the user space agent listens for rtnetlink notifications and 
updates the maps as changes happen (Figure 2). The 
former is another example of  bypassing all of the standard 

networking protocols and Linux APIs; the latter is the 
model used by the sample router in the kernel source tree 
[4]. While such a technique could be useful in simple 
deployments, it has many shortcomings including lack of 
support for policy routing and VRF, essential features such 
as VLANs and bonds, multipath routes, MTU checks, 
encapsulations, etc. Adding support for this feature list 
essentially amounts to duplicating Linux. 
 A lot of work has been put into making Linux a scalable 
NOS complete with an in-kernel ASIC driver using 
switchdev hooks in the kernel (Figure 3). With this 
approach software and hardware forwarding use the same 
data and the same model. The control plane uses standard 
Linux tools to configure networking and manage the 
forwarding tables. The kernel is updated to send 
notifications that the ASIC driver can use to program the 
hardware as well deny a configuration change (with proper 
error messages back to the user) if it is something not 
supported by the hardware. This design allows consistency 
between servers and switches where the same open source 

Figure 2. Forwarding with XDP and rtnetlink snooping.

Figure 3. Linux networking with switchdev.



ecosystem works everywhere - from  devOps tools such as 
ansible to automate bring up to route management via FRR 
and iproute2 to monitoring via net-snmp, sysdig and 
collectd. In short, the introduction of and support for a 
hardware offload does not change the operational model. 
 The same can hold true for forwarding via XDP. In a 
way XDP is really just a “software offload” with the 
forwarding decision being made in the driver. If programs 
running in XDP context had helpers to access kernel tables, 
then bpf programs would rely less on reimplementing the 
forwarding layer – both protocols and data management, 
and it would enable better coordination between XDP and 
the full networking stack. For example, XDP handles fast 
path forwarding and the full Linux stack serves as a slow 
path for exception cases such as fragmentation, broadcast 
and multicast, fdb aging, neighbor resolution, etc. handling 
a number of the limitations noted by Miano et al [9]. 
 The end result is a design that allows XDP solutions to 
better align with Linux and its ecosystem and enables 
cons i s t ency in managemen t , mon i to r ing and 
troubleshooting across Linux deployments, from software 
only forwarding, to fast path forwarding with XDP, to 
hardware offload via switchdev or true pure Linux NOS 
solutions (e.g., Cumulus Linux). Such consistency and 
standardization in operational models is essential for a 
viable support organization. 
 As an example a BPF helper was recently added to the 
Linux kernel allowing XDP programs to access the kernel’s 
FIB tables and serves as a primary example of how this can 
be done for generic forwarding without sacrificing much of 
the performance gains of XDP.[6] 
 However, the FIB helper is just the beginning. Alone, it 
serves a very limited use case: packets forwarded at layer 3 
from one network port to another without VLANs, LAGs, 
or other modern networking features such as ACLs, 
priority and traffic shaping. Those missing features are 
essential to making forwarding in XDP really useful. 
 The next section discusses key elements of a forwarding 
pipeline. This is followed by a discussion of how the 
pipeline elements fit into the current Linux networking 

stack and then a discussion of what is needed for XDP to 
leverage the kernel tables. 

Forwarding Pipeline 
This section discusses typical elements in a forwarding 
pipeline (Figure 5). A general packet pipeline has a never 
ending feature list, and each of those features has an 
impact on performance. This paper aims at gaining 
uniformity between the XDP and general Linux forwarding 
model, something that will evolve over time. The feature 
list discussed here is kept to the more essential elements: 
features such VLANs and bonds, ACLs and filters at 
various attach points, forwarding lookups and related 
processing (fdb and neighbor entries), and packet 
scheduling. 
Interfaces and Network Features 
Physical ports are often used as trunks, carrying traffic for 
any number of VLANs. Ports can also have other 
networking features built on top such as LAGs, and the 

Figure 4. Forwarding with XDP and kernel tables.

Figure 5. Example forwarding pipeline. 



features can be layered in any number of combinations 
(Figure 6). For example, a port can be associated with a 
LAG, and the LAG can be a bridge port member. Or the 
port can support traffic for a VLAN and the VLAN 
“object” is associated with a LAG - or vice versa, a VLAN 
on a LAG on port and the VLAN is the bridge port 
member. When processing a packet received on a port, the 
forwarding program needs to convert the ingress {port, 
VLAN} pair into other ids – such as a LAG id, a bridge 
port member for L2 forwarding, or a router interface for L3 
forwarding. 
 In addition to ingress, these features also apply on the 
egress, after the forwarding lookup. This means the egress 
reference returned from the lookup eventually needs to be 
converted to an actual NIC port. For example, if the FIB 
lookup returns an egress device that is a VLAN on a bond, 
then in addition to having the VLAN header added to the 
packet the forwarding program needs to be able to resolve 
the VLAN to its lower device, a bond, and then have the 
bond logic select the egress port to use for that packet. 
ACLs and Filters 
As illustrated in Figure 5, a typical packet processing 
pipeline allows ACLs and filters to be applied at multiple 
attach points and based on different object references. For 
example, an ACL or a filter can be attached to the ingress 
port itself, an upper entity such as a LAG, the bridge port 
member or router interface, and similar layers on the egress 
side. 
 The ACL can be a simple allow / deny list based on 
network or ethernet addresses. A filter can be added for 
policing or to determine a packet priority based on the 
VLAN header, any priority remapping, or traffic 
classification. 
Forwarding Lookup 
The end goal is to redirect the packet from one physical 
port to another, by either an L2 or L3 forwarding lookup. If 
the packet resolves to a bridge port member, a lookup is 
done in the bridge’s FDB based on the port index (or LAG 
id), VLAN id and destination mac. If the packet resolves to 
a router interface, then a FIB lookup is based on the L3 
interface and any VRF it is associated with. The result of 
the lookup is an egress interface (which may also be a 

higher level device). For L3, the lookup can require the 
nexthop address to be resolved; for L2, MAC learning may 
be enabled, so if this is a new source mac for the port, it 
gets added to the FDB.  
Packet Rewrite 
Once the egress path and new destination mac address is 
known, the ethernet header is updated, potentially adding 
or removing an 802.1Q header before redirecting the 
packet to the egress port. 
Packet Scheduling 
At egress a packet scheduler and queueing can be used, for 
example, to handle different bandwidths between the 
ingress and egress port (e.g., ingress port is 100G and 
egress port is 25G) or to transmit packets based on 
priorities. 

Forwarding with Linux Kernel Stack 
 Figure 7 shows a simplified version of packet processing 
by the full Linux stack, highlighting the parts that relate to 
the packet pipeline discussed in the previous section. 
 A packet is received by the NIC, pushed to kernel 
memory via DMA, and the NIC driver allocates an sk_buff 
for it, the main data structure for packet handling in Linux. 
The packet is then run through the general packet loop 
currently named __netif_receive_skb_core.  
 When the loop starts, the skb device is set to the 
net_device representing the ingress port. The loop in the 
top of Figure 7 shows the potential for ingress policies (via 
tc or netfilter) to be applied potentially on multiple passes 
with the skb device changing on each pass as it represents 
different features. For example, on a given pass through 
this loop, the skb device could represent the ingress port, a 
VLAN device representing the VLAN id on the port, an 
upper device such as a bond or macVLAN, or a VLAN 
device on a bond. The loop ends when there are no more 
upper layer features or the upper device is a bridge without 
an SVI. If the last upper device is a bridge, the previous 
device represents the bridge port member, otherwise the 
last device is used for the FIB lookup. 

Figure 6. Feature stacking on a port.



 From there the packet can hit one or more netfilter 
hooks, followed by a forwarding lookup (either in the 
bridge FDB or FIB), followed by more netfilter hooks. 
 Once the egress device is determined, the packet headers 
are rewritten (e.g., swapping source and destination mac 
addresses) and, based on features in the egress path, a 
VLAN header pushed on. The packet is then handed off to 
any queueing discipline configured for the egress device 
(e.g., traffic shaping, priority handling). 

Forwarding with XDP and Kernel Tables 
 This section discusses how to map the intentions of the 
packet pipeline in Figure 5 with the Linux facilities in 
Figure 7 and considering the feature stacking of Figure 6. 
But first, some caveats. 
 To handle forwarding in XDP - and considering the 
potential for many layers of devices - there are a couple of 
design choices. The approach advocated here is to only 
attach bpf programs to the net_devices representing the 
physical ports (the bottom row in Figure 5) and then allow 
that program to learn about any upper layer features 
through kernel helpers. 
 An alternative solution is to add support for attaching 
bpf programs to all of the virtual devices built on top of the 
physcial port - VLANs, LAGs, etc, and then on ingress, 
iterate over each upper device and run any attached 
programs.[10] While that might work for some deployment 
scenarios, for general forwarding the performance gains of 
XDP are lost if the bridge FDB or routing FIB lookup is 
done more than once using each virtual device. 

 Forwarding in XDP on a port should really only be used 
when the expectation is that the majority of packets 
received on that port will be forwarded versus going up the 
networking stack for either slow path handling or local 
delivery. XDP programs need to determine as soon as 
possible, with the least number of instructions, whether the 
forwarding will occur in XDP or if full stack assist is 
needed. 
 Finally, the intent of the approach advocated in this 
paper is to allow modularity - to allow the user to pick 
which elements are expected to be configured and only 
invoke those helpers when processing a packet. For 
example, if tc rules are expected to be installed only on the 
port or bond device, then there is no need to call the helper 
for acl or filtering on each of the intermediary devices. Or, 
the program can avoid the calls completely if nothing is 
installed. 
 There are 3 main “tables” or feature sets that need to be 
opened for use by XDP to get this capability rolling: 

1. the device table is needed to go from base port to 
upper devices used for forwarding and back to NIC 
port for egress and XDP redirect, 

2. traffic control for handling ACLs and filters (policing 
in particular) are a must now with packet scheduling 
for shaping as a follow-on, 

3. bridge FDB lookups and management (e.g., learning). 
Other hooks like netfilter can be added over time. 
Device Table 
As mentioned earlier, network ports typically have a 
number of networking features built on top. In Linux most 

Figure 7. Packet processing loop for Linux.



networking features are implemented as net_devices. The 
net_device provides a means for holding configuration data 
unique to the instance, showing relationships between 
devices (features), providing a programmatic means for 
accessing the packet on transmit and implementing 
protocols and characteristics unique to the networking 
feature. Thus, the feature stacking depicted in Figure 6 is 
implemented in Linux as device stacking with APIs to find 
the upper and lower devices. 
 For example, to handle VLAN traffic through a NIC 
port, a VLAN net_device is created on top of the 
net_device representing the port. Private data for the 
VLAN device holds the VLAN id and protocol. The 
VLAN driver is responsible for popping the VLAN header 
on ingress, updating the skb device to the net_device 
representing the VLAN, and if the VLAN net_device is the 
egress device the driver pushes the VLAN header onto the 
packet before passing the packet to the lower device. 
(VLAN aware bridges complicate this picture a bit as 
net_devices are not created for each VLAN on a bridge 
port member.) 
 Another example is LAG via bonding. A bond 
net_device is created, and lower interfaces are enslaved to 
it - be it a net_device representing a nic port or an upper 
layer virtual device like a VLAN device. The bond driver 
is responsible for implementing protocols associated with 
the feature (e.g., LACP and 802.3ad), details such as 
dropping certain packets received on the backup leg(s) of a 
bond, and selecting the egress leg of the bond when the 
forwarding lookup points to the bond device. 
 Thus, there are a lot of details involved in implementing 
a networking feature, and those details should not be 
replicated in BPF form. Rather, the goal is to allow 
standard Linux tools to configure and manage VLANs, 
bonds, bridges, VRF, etc and create APIs that bpf helpers 
can use to enable fast-path forwarding in XDP. 
 The starting set of device lookups for XDP programs:  

1.  Convert ingress {port, VLAN} to LAG id if it exists, 
2. Convert ingress {port, VLAN, dmac} or {LAG, 

VLAN, dmac} to a bridge port member (L2 
forwarding), 

3. Convert ingress {port, VLAN, dmac} or {LAG, 
VLAN, dmac} to a router interface (L3 forwarding), 
and 

4. Convert an egress device index to an egress port  
noting any packet affecting data such as a VLANs. 

Lookups for other intermediary devices (e.g., VLAN 
devices or LAG on egress) may be desired in time, but the 
above is a good start point. 
 Linux tracks the upper/lower relationships for 
net_devices via list heads. While traversing these lists 
provides a working solution that does not involve module 
code, it is inefficient, especially if a device has a lot of 
VLANs configured on it. 
 A more performant solution replicates the logic in Figure 
7 and directly considers specific information available such 
as VLAN ids and net_device flags indicating if a device is 
a bridge port or LAG slave. Such an approach requires 

refactoring module code to export or provide new APIs to 
query about relationships. Examples for VLANs are the 
ability to retrieve the VLAN device given a real device and 
a VLAN id and protocol (ie., exporting the existing internal 
vlan_find_dev) and using the existing vlan_dev_real_dev. 
The former provides a direct way of knowing if a VLAN id 
is built directly on top of a net_device - a detail not tracked 
by the upper and lower lists. The latter allows a quick 
conversion from a VLAN device to its lower device (the 
real device). 
 Another more complicated example is bonding. Bonding 
supports several modes (e.g., active/backup, round-robin)
[11] with potential impacts on ingress as well as egress.  
On ingress unicast packets associated with inactive slave(s) 
are dropped (exact delivery to be precise which means the 
packets are not passed to networking protocols such as 
IPv4 and IPv6). On egress the bonding driver implements 
logic to select one (or in the case of broadcast mode, all) of 
the enslaved ports. Thus, the bonding driver needs to be 
refactored to provide several  APIs to allow a bpf helper to: 
 1. convert a slave to a bond net_device on ingress, 
 2. indicate incompatibility with XDP forwarding (e.g., 

ingress on inactive slave or broadcast mode which 
needs full stack assist), and 

 3. determine an egress path given a bond device. 

 The primary challenge in allowing bpf programs to 
query the device table is that core, builtin code (e.g., net/
core/filter.c) needs access to module specific code. This is 
really a generic problem that applies to device-based 
features as well protocols such MPLS. One solution is the 
stubs approach used for IPv6. That option has been used in 
prototypes to date to make progress with VLANs and 
bonds as well as for MPLS support.[12] 
ACL/Filtering/Scheduling via tc 
As shown in Figure 5, a key networking feature for packet 
processing is the ability to attach ACLs and filters at 
multiple points in the ingress and egress paths. Linux has a 
number of facilities to implement a simple allow/deny ACL  
(tc, netfilter, FIB rules) and policing (tc and netfilter). But, 
only tc has the infrastructure for packet scheduling and 
traffic shaping. Given that, modifying tc to work in XDP 
context addresses more of the key features. Further, tc 
already aligns with switchdev and hardware offload, so 
converting tc to work with XDP continues the alignment 
with full stack, hardware offload and XDP forwarding. 
 No work has been to this point to get tc hooks available 
for xdp. Of all the changes needed for XDP forwarding, 
this one seems to be the most challenging. 

Forwarding 
A bpf helper already exists for L3 forwarding and FIB 
lookups with the associated neighbor entry for nexthops. 
While it has a few shortcomings (e.g., no support for 
lwtunnel encapsulations), it is sufficient as a start point for 
developing fast path forwarding in XDP. 



 What is missing is support for L2 forwarding and access 
to a bridge FDB. This has a few pieces: 

1. compatibility of a packet with XDP forwarding (e.g., 
linklocal addresses), 
2. FDB lookup, 
3. source mac learning, and 
4. SVIs (VLANs) on a bridge.  

Support for broadcast and multicast can be handled by the 
full stack. 
 No work has been done to this point for L2 forwarding. 
A code analysis suggests that once the device table lookups 
exist to find the bridge port member, it should not be 
difficult to create wrappers to existing bridge code to 
perform an fdb lookup or handle source mac learning for 
simpler bridge deployments to get the ball rolling. But, as 
with any feature, the devil is in the details.  

Conclusion 
For XDP to be a true win for Linux as a network operating 
system, it needs to better integrate with the Linux stack. If 
XDP only encourages users to re-implement protocols and 
forwarding in BPF form, then XDP is really no different 
than DPDK. 
 Fast path forwarding with XDP should be able to 
leverage: 
1. existing interface managers such as ifupdown2 to 

configure and manage standard networking features like 
VLANs, bonds, bridges and vrf; 

2. existing routing suites such as FRR to manage route 
updates (e.g.,  based on link events); 

3. existing tools and infrastructure for managing ACLs, 
filters and packet scheduling; and 

4. exist ing tools for automation, configuration 
management, monitoring and troubleshooting. 

All of those really come down to one thing: fast path 
forwarding with XDP should be visible to and managed by 
the existing networking APIs and rely less on custom 
deployments driven by opaque maps. That means more 
helpers are needed to allow BPF programs running in the 
XDP context to access data managed via the standard 
Linux networking APIs. 
 There will be limitations to what can be done with XDP, 
just as there are limitations with switchdev. One example is 
firewall, NAT’ing and routing by skb marks. Marks are 
held in skb metadata. With xdp forwarding there is no skb. 
But in the overall big picture, this is manageable for XDP 
just as it is with switchdev. 
 Yes, it does require considerable effort to refactor the 
existing code to work in both contexts: xdp and the current 
skb based packet processing. But the end result is worth 
the effort, enabling a consistent operational model across 
deployments from full stack processing, hardware offload 
(e.g., switchdev) or XDP fast path (software “offload”). 
  

Acronyms 
API  Application Programming Interface 

BPF  Berkeley Packet Filter 
DDOS  Distributed Denial of Service 
DPDK  Data Plane Development Kit 
eBPF  Extended Berkley Packet Filter 
FDB  Forwarding Database 
FIB  Forwarding Information Base 
FRR  FR Routing 
L2   Layer 2 (OSI model) 
L3   Layer 3 (OSI model) 
LAG  Link Aggregation (bond, team)  
NIC  Network Interface Card 
OS   Operating System 
RIF  Route Interface 
SVI  Switch Virtual Interface 
VRR  Virtual Router Redundancy 
XDP  eXpress Data Path 
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