
Leveraging Kernel Tables with XDP

David Ahern
Cumulus Networks  

Mountain View, CA, USA
dsahern@gmail.com

Abstract
XDP is a framework for running BPF programs in the NIC driver
to allow decisions about the fate of a received packet at the
earliest point in the Linux networking stack. For the most part the
BPF programs rely on maps to drive packet decisions, maps that
are managed, for example, by a user space agent. While high
performant, this architecture has implications on how a solution is
coded, configured, monitored and debugged.
 An alternative approach is to make the existing kernel
networking tables and implementations accessible by BPF
programs. This approach allows the use of standard Linux APIs
and tools to manage networking configuration and state while still
achieving the higher performance provided by XDP. Allowing
XDP programs to access kernel tables enables consistency in
automation and monitoring across a data center – software
forwarding, hardware offload and XDP “offload”.
 An example of providing access to kernel tables is the recently
added helper to allow IPv4 and IPv6 FIB and nexthop lookups in
XDP programs. Routing suites such as FRR manage the FIB
tables in response to configuration or link state changes, and the
XDP packet path benefits by automatically adapting to the FIB
updates in real time. While a huge first step, a FIB lookup alone
is not sufficient for many networking deployments. This paper
discusses the advantages of making kernel tables available to
XDP programs to create a programmable packet pipeline.

Keywords
XDP, eBPF, forwarding, Linux.

 Introduction
Linux is a general purpose OS with established
implementations for networking features and APIs for
configuring, monitoring and troubleshooting. In addition,
Linux has a rich ecosystem of software written to those
APIs – standard utilities for configuring networking (e.g.,
iproute2 and ifupdown2), routing suites such as FRR,
standard monitoring tools such as net-snmp, collectd, and
sysdig, and automation via ansible, puppet and chef. The
standard Linux APIs allow this software ecosystem to work
across OS versions (to various degrees based on kernel
features) providing a consistent and stable means for
automation and management across data center
deployments using the Linux networking stack.
 As a general purpose OS, Linux has a lot of features
making it useful across a variety of use cases, however
each of those features impacts the performance of specific
deployments. The need for higher performance has led to

the popularity of specialized packet processing toolkits
such as DPDK. These frameworks enable unique, opaque
power-sucking solutions that bypass the Linux networking
stack and really make Linux nothing more than a boot OS
from a networking perspective.
 Recently, eBPF has exploded in Linux with the ability to
install small programs at many attach points across the
kernel enabling a lot of on-the-fly programmability. One
specific use case of this larger eBPF picture is called XDP
(eXpress Data Path) [1]. XDP refers to BPF programs run
by the NIC driver on each packet received to allow
decisions about the fate of a packet at the earliest point in
the Linux networking stack (Figure 1). Targeted use cases
for XDP include DDOS protections via an ACL [2], packet
mangling and redirection as a load balancer [3], and fast
path forwarding by updating the ethernet header and
redirecting to a different interface [4][5]. XDP provides the
potential for a more Linux friendly alternative to DPDK,
allowing custom, targeted processing on packets that scales
linearly with CPU cores [6].

 Figure 1. XDP Architecture.

 The performance benefit of XDP is because programs
are run at the earliest point in the packet processing path,
before any allocations have been done for example. A side
effect of this design is that BPF programs run in the XDP
context have few kernel helpers (kernel code that can be
invoked by a BPF program), most notably because the

Linux networking stack operates on skbs and the XDP
context is before an skb is allocated. This means bpf
programs have to do their own packet parsing, processing
and rewrites, and it drives a tendency to reimplement
networking functionality in BPF form, be it something as
simple as an allow/drop ACL to iptables and standard
protocols such as bridging or layer 3 routing.
 Furthermore, there are few options for managing
configuration data and state, most notably through BPF
maps or hardcoded data embedded in the program. From a
configuration perspective BPF maps are managed by a
userspace agent meaning the design needs to rely on
orchestration software or it needs to track kernel state (e.g.,
via notifications) and replicate the data in the maps.
 The end result is either a duplication of implementations
for networking features (which means subtle differences
between Linux forwarding and XDP forwarding) or each
XDP solution is a unique one-off from a Linux perspective.
 It is good to see Linux gain high performance
improvements and innovations that enable new solutions
such as Cilium [7] with its L4 to L7 policy enforcement,
but for a lot of established packet processing use cases
(e.g., firewall, NAT, forwarding), a better end goal is for
XDP to integrate into the Linux stack in a more consistent
way - one that maintains the bigger Linux picture and does
not require duplicating code to leverage the new
performance capability. If XDP means protocols are
reimplemented in BPF with opaque data maps and users
have to abandon their existing tools, processes and
workflow to work with XDP solutions, then is it really any
different than a DPDK based solution? In both cases the
Linux networking stack is bypassed in favor of non-
standard code with non-standard management, non-
standard monitoring, non-standard troubleshooting - all
hallmarks of the userspace bypass techniques.
 Tools like bpftool [8] certainly help to a degree in that it
provides a common tool for introspection of programs and
maps, but the programs and meaning of the maps can and
will vary by solutions, vendors and versions. Debugging or
understanding a deployment that leverages BPF
everywhere is unique to each instance. This creates havoc
on a support organization when every node in the data
center is a unique solution creating a configuration,
monitoring and support nightmare and negating powerful
capabilities like automation and devOps. While new
contexts like XDP will inevitably affect the use of some
tools (e.g., packet captures like tcpdump), it does not mean
all tools and APIs need to be abandoned.
 The rest of this paper focuses on one use case to drive
home the need for better integration of XDP with existing
Linux APIs: fast path forwarding with XDP. There are 2
options for an XDP forwarding architecture that relies on a
bpf program driven by maps managed by a user space
agent: 1. the agent is managed by an SDN controller for
example, receiving updates from a remote controller, or 2.
the user space agent listens for rtnetlink notifications and
updates the maps as changes happen (Figure 2). The
former is another example of bypassing all of the standard

networking protocols and Linux APIs; the latter is the
model used by the sample router in the kernel source tree
[4]. While such a technique could be useful in simple
deployments, it has many shortcomings including lack of
support for policy routing and VRF, essential features such
as VLANs and bonds, multipath routes, MTU checks,
encapsulations, etc. Adding support for this feature list
essentially amounts to duplicating Linux.
 A lot of work has been put into making Linux a scalable
NOS complete with an in-kernel ASIC driver using
switchdev hooks in the kernel (Figure 3). With this
approach software and hardware forwarding use the same
data and the same model. The control plane uses standard
Linux tools to configure networking and manage the
forwarding tables. The kernel is updated to send
notifications that the ASIC driver can use to program the
hardware as well deny a configuration change (with proper
error messages back to the user) if it is something not
supported by the hardware. This design allows consistency
between servers and switches where the same open source

Figure 2. Forwarding with XDP and rtnetlink snooping.

Figure 3. Linux networking with switchdev.

ecosystem works everywhere - from devOps tools such as
ansible to automate bring up to route management via FRR
and iproute2 to monitoring via net-snmp, sysdig and
collectd. In short, the introduction of and support for a
hardware offload does not change the operational model.
 The same can hold true for forwarding via XDP. In a
way XDP is really just a “software offload” with the
forwarding decision being made in the driver. If programs
running in XDP context had helpers to access kernel tables,
then bpf programs would rely less on reimplementing the
forwarding layer – both protocols and data management,
and it would enable better coordination between XDP and
the full networking stack. For example, XDP handles fast
path forwarding and the full Linux stack serves as a slow
path for exception cases such as fragmentation, broadcast
and multicast, fdb aging, neighbor resolution, etc. handling
a number of the limitations noted by Miano et al [9].
 The end result is a design that allows XDP solutions to
better align with Linux and its ecosystem and enables
cons i s t ency in managemen t , mon i to r ing and
troubleshooting across Linux deployments, from software
only forwarding, to fast path forwarding with XDP, to
hardware offload via switchdev or true pure Linux NOS
solutions (e.g., Cumulus Linux). Such consistency and
standardization in operational models is essential for a
viable support organization.
 As an example a BPF helper was recently added to the
Linux kernel allowing XDP programs to access the kernel’s
FIB tables and serves as a primary example of how this can
be done for generic forwarding without sacrificing much of
the performance gains of XDP.[6]
 However, the FIB helper is just the beginning. Alone, it
serves a very limited use case: packets forwarded at layer 3
from one network port to another without VLANs, LAGs,
or other modern networking features such as ACLs,
priority and traffic shaping. Those missing features are
essential to making forwarding in XDP really useful.
 The next section discusses key elements of a forwarding
pipeline. This is followed by a discussion of how the
pipeline elements fit into the current Linux networking

stack and then a discussion of what is needed for XDP to
leverage the kernel tables.

Forwarding Pipeline
This section discusses typical elements in a forwarding
pipeline (Figure 5). A general packet pipeline has a never
ending feature list, and each of those features has an
impact on performance. This paper aims at gaining
uniformity between the XDP and general Linux forwarding
model, something that will evolve over time. The feature
list discussed here is kept to the more essential elements:
features such VLANs and bonds, ACLs and filters at
various attach points, forwarding lookups and related
processing (fdb and neighbor entries), and packet
scheduling.
Interfaces and Network Features
Physical ports are often used as trunks, carrying traffic for
any number of VLANs. Ports can also have other
networking features built on top such as LAGs, and the

Figure 4. Forwarding with XDP and kernel tables.

Figure 5. Example forwarding pipeline.

features can be layered in any number of combinations
(Figure 6). For example, a port can be associated with a
LAG, and the LAG can be a bridge port member. Or the
port can support traffic for a VLAN and the VLAN
“object” is associated with a LAG - or vice versa, a VLAN
on a LAG on port and the VLAN is the bridge port
member. When processing a packet received on a port, the
forwarding program needs to convert the ingress {port,
VLAN} pair into other ids – such as a LAG id, a bridge
port member for L2 forwarding, or a router interface for L3
forwarding.
 In addition to ingress, these features also apply on the
egress, after the forwarding lookup. This means the egress
reference returned from the lookup eventually needs to be
converted to an actual NIC port. For example, if the FIB
lookup returns an egress device that is a VLAN on a bond,
then in addition to having the VLAN header added to the
packet the forwarding program needs to be able to resolve
the VLAN to its lower device, a bond, and then have the
bond logic select the egress port to use for that packet.
ACLs and Filters
As illustrated in Figure 5, a typical packet processing
pipeline allows ACLs and filters to be applied at multiple
attach points and based on different object references. For
example, an ACL or a filter can be attached to the ingress
port itself, an upper entity such as a LAG, the bridge port
member or router interface, and similar layers on the egress
side.
 The ACL can be a simple allow / deny list based on
network or ethernet addresses. A filter can be added for
policing or to determine a packet priority based on the
VLAN header, any priority remapping, or traffic
classification.
Forwarding Lookup
The end goal is to redirect the packet from one physical
port to another, by either an L2 or L3 forwarding lookup. If
the packet resolves to a bridge port member, a lookup is
done in the bridge’s FDB based on the port index (or LAG
id), VLAN id and destination mac. If the packet resolves to
a router interface, then a FIB lookup is based on the L3
interface and any VRF it is associated with. The result of
the lookup is an egress interface (which may also be a

higher level device). For L3, the lookup can require the
nexthop address to be resolved; for L2, MAC learning may
be enabled, so if this is a new source mac for the port, it
gets added to the FDB.
Packet Rewrite
Once the egress path and new destination mac address is
known, the ethernet header is updated, potentially adding
or removing an 802.1Q header before redirecting the
packet to the egress port.
Packet Scheduling
At egress a packet scheduler and queueing can be used, for
example, to handle different bandwidths between the
ingress and egress port (e.g., ingress port is 100G and
egress port is 25G) or to transmit packets based on
priorities.

Forwarding with Linux Kernel Stack
 Figure 7 shows a simplified version of packet processing
by the full Linux stack, highlighting the parts that relate to
the packet pipeline discussed in the previous section.
 A packet is received by the NIC, pushed to kernel
memory via DMA, and the NIC driver allocates an sk_buff
for it, the main data structure for packet handling in Linux.
The packet is then run through the general packet loop
currently named __netif_receive_skb_core.
 When the loop starts, the skb device is set to the
net_device representing the ingress port. The loop in the
top of Figure 7 shows the potential for ingress policies (via
tc or netfilter) to be applied potentially on multiple passes
with the skb device changing on each pass as it represents
different features. For example, on a given pass through
this loop, the skb device could represent the ingress port, a
VLAN device representing the VLAN id on the port, an
upper device such as a bond or macVLAN, or a VLAN
device on a bond. The loop ends when there are no more
upper layer features or the upper device is a bridge without
an SVI. If the last upper device is a bridge, the previous
device represents the bridge port member, otherwise the
last device is used for the FIB lookup.

Figure 6. Feature stacking on a port.

 From there the packet can hit one or more netfilter
hooks, followed by a forwarding lookup (either in the
bridge FDB or FIB), followed by more netfilter hooks.
 Once the egress device is determined, the packet headers
are rewritten (e.g., swapping source and destination mac
addresses) and, based on features in the egress path, a
VLAN header pushed on. The packet is then handed off to
any queueing discipline configured for the egress device
(e.g., traffic shaping, priority handling).

Forwarding with XDP and Kernel Tables
 This section discusses how to map the intentions of the
packet pipeline in Figure 5 with the Linux facilities in
Figure 7 and considering the feature stacking of Figure 6.
But first, some caveats.
 To handle forwarding in XDP - and considering the
potential for many layers of devices - there are a couple of
design choices. The approach advocated here is to only
attach bpf programs to the net_devices representing the
physical ports (the bottom row in Figure 5) and then allow
that program to learn about any upper layer features
through kernel helpers.
 An alternative solution is to add support for attaching
bpf programs to all of the virtual devices built on top of the
physcial port - VLANs, LAGs, etc, and then on ingress,
iterate over each upper device and run any attached
programs.[10] While that might work for some deployment
scenarios, for general forwarding the performance gains of
XDP are lost if the bridge FDB or routing FIB lookup is
done more than once using each virtual device.

 Forwarding in XDP on a port should really only be used
when the expectation is that the majority of packets
received on that port will be forwarded versus going up the
networking stack for either slow path handling or local
delivery. XDP programs need to determine as soon as
possible, with the least number of instructions, whether the
forwarding will occur in XDP or if full stack assist is
needed.
 Finally, the intent of the approach advocated in this
paper is to allow modularity - to allow the user to pick
which elements are expected to be configured and only
invoke those helpers when processing a packet. For
example, if tc rules are expected to be installed only on the
port or bond device, then there is no need to call the helper
for acl or filtering on each of the intermediary devices. Or,
the program can avoid the calls completely if nothing is
installed.
 There are 3 main “tables” or feature sets that need to be
opened for use by XDP to get this capability rolling:

1. the device table is needed to go from base port to
upper devices used for forwarding and back to NIC
port for egress and XDP redirect,

2. traffic control for handling ACLs and filters (policing
in particular) are a must now with packet scheduling
for shaping as a follow-on,

3. bridge FDB lookups and management (e.g., learning).
Other hooks like netfilter can be added over time.
Device Table
As mentioned earlier, network ports typically have a
number of networking features built on top. In Linux most

Figure 7. Packet processing loop for Linux.

networking features are implemented as net_devices. The
net_device provides a means for holding configuration data
unique to the instance, showing relationships between
devices (features), providing a programmatic means for
accessing the packet on transmit and implementing
protocols and characteristics unique to the networking
feature. Thus, the feature stacking depicted in Figure 6 is
implemented in Linux as device stacking with APIs to find
the upper and lower devices.
 For example, to handle VLAN traffic through a NIC
port, a VLAN net_device is created on top of the
net_device representing the port. Private data for the
VLAN device holds the VLAN id and protocol. The
VLAN driver is responsible for popping the VLAN header
on ingress, updating the skb device to the net_device
representing the VLAN, and if the VLAN net_device is the
egress device the driver pushes the VLAN header onto the
packet before passing the packet to the lower device.
(VLAN aware bridges complicate this picture a bit as
net_devices are not created for each VLAN on a bridge
port member.)
 Another example is LAG via bonding. A bond
net_device is created, and lower interfaces are enslaved to
it - be it a net_device representing a nic port or an upper
layer virtual device like a VLAN device. The bond driver
is responsible for implementing protocols associated with
the feature (e.g., LACP and 802.3ad), details such as
dropping certain packets received on the backup leg(s) of a
bond, and selecting the egress leg of the bond when the
forwarding lookup points to the bond device.
 Thus, there are a lot of details involved in implementing
a networking feature, and those details should not be
replicated in BPF form. Rather, the goal is to allow
standard Linux tools to configure and manage VLANs,
bonds, bridges, VRF, etc and create APIs that bpf helpers
can use to enable fast-path forwarding in XDP.
 The starting set of device lookups for XDP programs:

1. Convert ingress {port, VLAN} to LAG id if it exists,
2. Convert ingress {port, VLAN, dmac} or {LAG,

VLAN, dmac} to a bridge port member (L2
forwarding),

3. Convert ingress {port, VLAN, dmac} or {LAG,
VLAN, dmac} to a router interface (L3 forwarding),
and

4. Convert an egress device index to an egress port
noting any packet affecting data such as a VLANs.

Lookups for other intermediary devices (e.g., VLAN
devices or LAG on egress) may be desired in time, but the
above is a good start point.
 Linux tracks the upper/lower relationships for
net_devices via list heads. While traversing these lists
provides a working solution that does not involve module
code, it is inefficient, especially if a device has a lot of
VLANs configured on it.
 A more performant solution replicates the logic in Figure
7 and directly considers specific information available such
as VLAN ids and net_device flags indicating if a device is
a bridge port or LAG slave. Such an approach requires

refactoring module code to export or provide new APIs to
query about relationships. Examples for VLANs are the
ability to retrieve the VLAN device given a real device and
a VLAN id and protocol (ie., exporting the existing internal
vlan_find_dev) and using the existing vlan_dev_real_dev.
The former provides a direct way of knowing if a VLAN id
is built directly on top of a net_device - a detail not tracked
by the upper and lower lists. The latter allows a quick
conversion from a VLAN device to its lower device (the
real device).
 Another more complicated example is bonding. Bonding
supports several modes (e.g., active/backup, round-robin)
[11] with potential impacts on ingress as well as egress.
On ingress unicast packets associated with inactive slave(s)
are dropped (exact delivery to be precise which means the
packets are not passed to networking protocols such as
IPv4 and IPv6). On egress the bonding driver implements
logic to select one (or in the case of broadcast mode, all) of
the enslaved ports. Thus, the bonding driver needs to be
refactored to provide several APIs to allow a bpf helper to:
 1. convert a slave to a bond net_device on ingress,
 2. indicate incompatibility with XDP forwarding (e.g.,

ingress on inactive slave or broadcast mode which
needs full stack assist), and

 3. determine an egress path given a bond device.

 The primary challenge in allowing bpf programs to
query the device table is that core, builtin code (e.g., net/
core/filter.c) needs access to module specific code. This is
really a generic problem that applies to device-based
features as well protocols such MPLS. One solution is the
stubs approach used for IPv6. That option has been used in
prototypes to date to make progress with VLANs and
bonds as well as for MPLS support.[12]
ACL/Filtering/Scheduling via tc
As shown in Figure 5, a key networking feature for packet
processing is the ability to attach ACLs and filters at
multiple points in the ingress and egress paths. Linux has a
number of facilities to implement a simple allow/deny ACL
(tc, netfilter, FIB rules) and policing (tc and netfilter). But,
only tc has the infrastructure for packet scheduling and
traffic shaping. Given that, modifying tc to work in XDP
context addresses more of the key features. Further, tc
already aligns with switchdev and hardware offload, so
converting tc to work with XDP continues the alignment
with full stack, hardware offload and XDP forwarding.
 No work has been to this point to get tc hooks available
for xdp. Of all the changes needed for XDP forwarding,
this one seems to be the most challenging.

Forwarding
A bpf helper already exists for L3 forwarding and FIB
lookups with the associated neighbor entry for nexthops.
While it has a few shortcomings (e.g., no support for
lwtunnel encapsulations), it is sufficient as a start point for
developing fast path forwarding in XDP.

 What is missing is support for L2 forwarding and access
to a bridge FDB. This has a few pieces:

1. compatibility of a packet with XDP forwarding (e.g.,
linklocal addresses),
2. FDB lookup,
3. source mac learning, and
4. SVIs (VLANs) on a bridge.

Support for broadcast and multicast can be handled by the
full stack.
 No work has been done to this point for L2 forwarding.
A code analysis suggests that once the device table lookups
exist to find the bridge port member, it should not be
difficult to create wrappers to existing bridge code to
perform an fdb lookup or handle source mac learning for
simpler bridge deployments to get the ball rolling. But, as
with any feature, the devil is in the details.

Conclusion
For XDP to be a true win for Linux as a network operating
system, it needs to better integrate with the Linux stack. If
XDP only encourages users to re-implement protocols and
forwarding in BPF form, then XDP is really no different
than DPDK.
 Fast path forwarding with XDP should be able to
leverage:
1. existing interface managers such as ifupdown2 to

configure and manage standard networking features like
VLANs, bonds, bridges and vrf;

2. existing routing suites such as FRR to manage route
updates (e.g., based on link events);

3. existing tools and infrastructure for managing ACLs,
filters and packet scheduling; and

4. exist ing tools for automation, configuration
management, monitoring and troubleshooting.

All of those really come down to one thing: fast path
forwarding with XDP should be visible to and managed by
the existing networking APIs and rely less on custom
deployments driven by opaque maps. That means more
helpers are needed to allow BPF programs running in the
XDP context to access data managed via the standard
Linux networking APIs.
 There will be limitations to what can be done with XDP,
just as there are limitations with switchdev. One example is
firewall, NAT’ing and routing by skb marks. Marks are
held in skb metadata. With xdp forwarding there is no skb.
But in the overall big picture, this is manageable for XDP
just as it is with switchdev.
 Yes, it does require considerable effort to refactor the
existing code to work in both contexts: xdp and the current
skb based packet processing. But the end result is worth
the effort, enabling a consistent operational model across
deployments from full stack processing, hardware offload
(e.g., switchdev) or XDP fast path (software “offload”).

Acronyms
API Application Programming Interface

BPF Berkeley Packet Filter
DDOS Distributed Denial of Service
DPDK Data Plane Development Kit
eBPF Extended Berkley Packet Filter
FDB Forwarding Database
FIB Forwarding Information Base
FRR FR Routing
L2 Layer 2 (OSI model)
L3 Layer 3 (OSI model)
LAG Link Aggregation (bond, team)
NIC Network Interface Card
OS Operating System
RIF Route Interface
SVI Switch Virtual Interface
VRR Virtual Router Redundancy
XDP eXpress Data Path

References
1. IO Visor Project, https://www.iovisor.org/technology/
xdp.

2. Gilberto Bertin, "XDP in practice: integrating XDP into
our DDoS mitigation pipeline", Netdev 2.1, The Technical
Conference on Linux Networking. https://netdevconf.org/
2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf

3. Nikita Shirokov and Ranjeeth Dasineni, “Open-sourcing
Katran, a scalable network load balancer”, https://
code.fb.com/open-source/open-sourcing-katran-a-scalable-
network-load-balancer/

4. Christina Jacob, IPv4 XDP router example, https://
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/samples/bpf/xdp_router_ipv4_{kern,user}.c

5. David Ahern, XDP forwarding example, https://
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/samples/bpf/xdp_fwd_{kern,user}.c.  

6. Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller, "The eXpress Data Path: Fast
Programmable Packet Processing in the Operating System
Kernel", CoNEXT 2018 - International Conference on
emerging Networking EXperiments and Technologies.

7. Cilium, https://cilium.io/

8. bpftool source code, https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/tools/bpf/bpftool

9. Sebastiano Miano, Matteo Bertrone, Fulvio Risso,
Mauricio Vasquez Bernal, and Massimo Tumolo, “Creating
Complex Network Services with eBPF: Experience and
Lessons Learned,” Proceedings of IEEE International
Conference on High Performance Switching and Routing,
B u c h a r e s t , R o m a n i a , J u n e 2 0 1 8 . h t t p s : / /
sebymiano.github.io/documents/18-eBPF-experience.pdf

https://netdevconf.org/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://netdevconf.org/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://netdevconf.org/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://cilium.io/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/bpf/bpftool
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/bpf/bpftool
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/bpf/bpftool
https://sebymiano.github.io/documents/18-eBPF-experience.pdf
https://sebymiano.github.io/documents/18-eBPF-experience.pdf
https://sebymiano.github.io/documents/18-eBPF-experience.pdf

10. Jason Wang, XDP rx handler patch set, https://lwn.net/
ml /ne tdev /1534129513-4845-1-g i t - send-emai l -
jasowang@redhat.com/

1 1 . L i n u x F o u n d a t i o n W i k i , h t t p s : / /
wiki.linuxfoundation.org/networking/bonding

12. David Ahern, repository on github, https://github.com/
dsahern/linux.git, bpf/kernel-tables-wip branch.

Author Biography
David Ahern is a Principal Engineer at Cumulus Networks.

https://lwn.net/ml/netdev/1534129513-4845-1-git-send-email-jasowang@redhat.com/
https://lwn.net/ml/netdev/1534129513-4845-1-git-send-email-jasowang@redhat.com/
https://lwn.net/ml/netdev/1534129513-4845-1-git-send-email-jasowang@redhat.com/

