
Teaching perf to show
processor hazards

Madhavan Srinivasan
maddy@linux.vnet.ibm.com

Linux Technology Centre - IBM

mailto:Maddy@linux.vnet.ibm.com

2 / 20

Agenda

• Processor Pipeline
• Pipeline issues/Hazard
• IBM Processor Sampling support
• Perf API - arch neutral interface
• Perf tool – options and enhancements
• Screenshot

3 / 20

Instruction cycle

• Processing instruction
includes these steps

• Fetch opcode
• Decode stage
• register/memory fetch

based on opcode type
• Execute instruction
• write-back/store the result

4 / 20

Instruction cycle

• Most modern
microprocessors employ
complex instruction
execution (pipelined
superscalar)

• Multiple instruction in
parallel

• more execution units
• Execution unit divided in

different stages
• Speculation/OOO Execution
• Multiple different

pipelines/Sub-pipelines

Fetch Decode

I-Cache
Branch

predictor

Dispatch/
Issue

Commit

Out of Order

Fixed
Point

Floating
Point

Vector

Load/
Store

DCache

5 / 20

Example:IBM Power9

Source: IBM Power9 Processor Architecture. Satish Kumar Sadasivam ; Brian W. Thompto; Ron
Kalla ; William J. Starke. IEEE Micro, Volume 37, Issue 2, 2017.
https://ieeexplore.ieee.org/document/7924241?section=abstract

6 / 20

Performance (Instruction per Cycles)

• Increases Stall cycles
• Reduce workload performance
• Lowers Instruction per cycles

● Hazard

7 / 20

Hazards
• Prevent the next instruction in the instruction stream from

being executing during its designated clock cycle
● Performance hit

• Classes of Hazards:
• Structural

• part of the processor's hardware is needed by two or more instructions at
the same time

• Control
• conditional branches interfere with instruction fetches in a pipeline

• Data
• instructions that exhibit data dependence modify data in different stages

of a pipeline
• Read after Write (RAW) hazards, also known as true dependences
• Write after Write (WAW) hazards, also known as output dependences
• Write after Read (WAR) hazards, also known as antidependences

8 / 20

IBM Power Processor Sampling Support

• Why sample
• Identificatiion of hotspots in code/data and performance-

sensitive areas
• Mark (sample) an instruction and collection details

• 64bit register records details about marked instruction during its
lifetime in pipeline

• Power ISA provides three special purpose registers
• Sampled Instruction Address Register (SIAR)
• Sampled Data Address Register (SDAR)
• Sample Instruction Event Register (SIER)

• Source: https://www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?aliasId=POWER9_Sforza#

9 / 20

Why perf?

• Performance tool used by eco-system
• Provides access to Performance Monitoring Unit (PMU)

• Allows to closer look at hardware behaviour
• Capability to generate reports out of data collected
• It is fast, lightweight and precise

10 / 20

Why add hazard information in perf
• perf today support exporting memory sampling

information
• PERF_SAMPLE_DATA_SRC and PERF_SAMPLE_WEIGHT

• Based on hardware support, it expose
• Instruction class (load, store ….)
• where the data came from (memory hierarchy, hit, hitm, miss)
• how long did it took for the reload (time in cycles)
• Data translation (TLB), snoop

11 / 20

Challenges extending -- perf_mem_data_src

• perf_mem_data_src
intended for memory
sampling

• Not enough bits to
expose

• pipeline stage
• hazard reason
• Stall reason
• Other instruction class

12 / 20

Approach to export hazard data via perf

• Struct to collect hazard data
• Sampling type/format
• Tool option to notify hazard data collection
• New reporting mode to present the hazard data
• Optional new built-in tool (wrapper for perf record)

• Capture and present Hazard data – Usability
• Similar to "perf mem"

13 / 20

Hazard data – perf screenshot

14 / 20

perf_pipeline_haz_data

• Pipeline Stages as u32
• Arch can decide how many
• Bit mask or Value as index

• Hazard and stall reasons
as separate fields

• Cleaner implementation
• Multiple hazard

representation
• Instruction cache

hierarchy
• Processor version

• tool side to post process

15 / 20

perf_pipeline_haz_data – struct to collect
hazard data
• Added new perf sample

type/format
• PERF_SAMPLE_PIPELINE_HAZ

• Proposed to be part of
include/uapi/linux/perf_event.h

• Macros could be part of arch
folder
(ex.. arch/powerpc/include/uapi/as
m/perf_pipeline_haz.h

16 / 20

perf tool -- Enhancements for hazard capture

• New perf tool option
• User to indicate hazard data capture
• Proposing "-H" as option
• Needed to enable attr_sample_type

Raw event "r401e0" used here is "PM_MRK_INST_CMPL" which enables IBM
Power processor sampling support to capture hazard/stall data

17 / 20

perf tool – Enhancements for hazard capture

• Support functions to present raw hazard structure
data

• Perf report "–D" support

Screenshot show one PERF_RECORD_SAMPLE data output from "perf report –
D" command. Presents all the elements of perf_pipeline_haz_data struct

18 / 20

hazard-info – perf report enhancement

• New "--hazard-info" mode
• Support new –sort types
• Focused on hazard data presentation

19 / 20

Legal Statement

• This work represents the view of the authors and does
not necessarily represent the view of the employers
(IBM Corporation).

• IBM and IBM (Logo) are trademarks or registered
trademarks of International Business Machines in United
States and/or other countries.

• Linux is a registered trademark of Linus Torvalds.
• Other company, product and service names may be

trademarks or service marks of others.

20 / 20

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

