
Recursive read deadlocks and Where to
find them

冯博群 Boqun Feng
boqun.feng@gmail.com

Agenda

● Deadlock cases
● Lockdep
● Flavors of read/write locks
● More deadlock cases
● (Recursive) read deadlock detection

Deadlock cases

● self deadlock

● ABBA deadlock

P0

spin_lock(&A);
...
spin_lock(&A);

P0 P1

spin_lock(&A); spin_lock(&B);
... ...
spin_lock(&B); spin_lock(&A);

Deadlock cases (cont.)

● IRQ safe->unsafe deadlocks
○ IRQs bring more "code combinations"

P0

<irq enabled>
spin_lock(&A);
...
<in irq handler>
 spin_lock(&A);

P0 P1

<irq enabled> <irq disabled>
spin_lock(&A); spin_lock(&B);
... ...
<in irq handler>
 spin_lock(&B); spin_lock(&A);

Deadlock cases (cont.)

● ABBCCA deadlocks
○ or more

P0 P1 P2

spin_lock(&A); spin_lock(&B); spin_lock(&C);
...
spin_lock(&B); spin_lock(&C); spin_lock(&A);

Lockdep

● Locks are grouped by classes
● Lock dependency

○ A -> B

● Dependency graph

P0

spin_lock(&A);
...
spin_lock(&B);

A B

Lockdep (cont.)

● Deadlock detection
○ A closed path (circle) in the dependency graph

A B C

Flavors of read/write locks

● Recursive/unfair rwlocks
○ readers are preferable

r1 r1 r1

w1 w1

r2

Flavors of read/write locks (cont.)

● Non-recursive/fair rwlocks

r1 r1 r1

w1 w1

r2

OR
r1 r1

r2

Flavors of read/write locks (cont.)

flavors multiple
readers

recursive c.s a reader blocks
another reader

recursive Y Y N

non-recursive Y N Y* (via a waiting
writer)

Flavors of read/write locks (cont.)

● Block condition
○ Recursive readers can get blocked by writers
○ Non-recursive readers can get blocked by non-recursive readers (via a

waiting writer) or writers

reader(recursive or not) writer

recursive reader N Y

non-recursive(r & w) Y Y

More deadlock cases

● For non-recursive read/write locks
○ Same as spinlocks, since readers can block each other via a waiting

writer

P0 P1 P2

read_lock(&A); spin_lock(&B);
... ... write_lock(&A);
spin_lock(&B); read_lock(&A);

More deadlock cases

● For recursive locks, things get interesting:
○ This is not a deadlock

P0 P1

read_lock(&A); spin_lock(&B);
... ...
spin_lock(&B); read_lock(&A);

A B
R
W

W
R

More deadlock cases

● But this is a deadlock

P0 P1

read_lock(&A); spin_lock(&B);
... ...
spin_lock(&B); write_lock(&A);

A B
R
W

W
W

More deadlock cases

● Things get complicated when we mixed recursive and
non-recursive read locks

● queued rwlock
○ non-recursive read lock in process context
○ recursive read lock in irq context

More deadlock cases

● Recursive deadlock case

P0 P1 P2

<in irq handler>
 read_lock(&B); spin_lock_irq(&A);
 write_lock_irq(&B);
 spin_lock(&A); read_lock(&B);

A B
EN

SN

More deadlock cases

● Recursive *not* deadlock case

P0 P1 P2

<in irq handler>
 spin_lock(&A); read_lock(&B);
 write_lock_irq(&B);
 read_lock(&B); spin_lock_irq(&A);

A B
ER

SN

Recursive read deadlock detection

● Limitation of current lockdep
○ circles mean deadlocks
○ while not all the circles mean deadlocks if we consider recursive readers.

A B
R
W

W
R

Recursive read deadlock detection

● Goals
○ Compatible with original lockdep detection.
○ Handle qrwlock semantics.
○ No false positive.

Recursive read deadlock detection

● Overview
○ Classification for lock dependencies
○ Definition of "strong" dependencies
○ Deadlock Condition
○ Informal Proof

Classification of lock dependencies

● We used to treat all lock dependencies as the same
● but they are really not.
● {R reader, reader, writer} -> {R reader, reader, writer} : 9

combinations

Classification of lock dependencies
● Groups things into 4

○ {R reader, reader} -> {reader, writer}: -(SN)->
○ {R reader, reader} -> {R reader}: -(SR)->
○ {writer} -> {reader, writer}: -(EN)->
○ {writer} -> {R reader}: -(ER)->

● Why? Because for a dependency A -> B, we cares:
○ Whether A can block anyone
○ Whether B can get blocked by anyone

P0 P1

read_lock(&A); spin_lock(&B);
... ...
spin_lock(&B); write_lock(&A);

A B
S
W

EN

Definition of "strong" dependencies

● Chaining lock dependencies via block conditions
● For dependencies A -> B and B -> C

○ A -> B -> C is a "strong" dependency path iff
■ A -> B : -(*R)-> and B -> C : -(E*)->, or
■ A -> B : -(*N)-> and B -> C : -(S*)->, or
■ A -> B : -(*N)-> and B -> C : -(E*)->

○ IOW, -(*R)-> -(S*)-> will break the dependency

● works for "A -> B, B -> C and C -> D" case, and so on

Deadlock condition
● A strong dependency chain/path forms a circle

A B
EN

SN

A B
EN

SN

CSN

P0 P1 P2

spin_lock(&A); read_lock(&B); read_lock(&C);
...
write_lock(&B); write_lock(&C); spin_lock(&A);

Informal Proof

● We want to prove:
○ A strong dependency circle is equivalent to deadlock possibility

● Necessary condition
○ a strong dependency circle => deadlock possibility
○ Easy, because a strong dependency circle means we can build a

combination of locking sequences that cause deadlock.

Informal Proof (cont.)

● Sufficient condition
○ deadlock possibility => a strong dependency circle
○ My trick

■ deadlock possibility => circular wait (deadlock necessary condition
according to wikipedia)

■ circular wait => a strong dependency circle

Implementation
● Extend __bfs() to walk on strong dependency path
● Make LOCK*_STATE* part of the chainkeys
● Add test cases

○ also unleash irq_read_recursion2

● Enable this for srcu
● Code

○ git.kernel.org/pub/scm/linux/kernel/git/boqun/linux.git arr-rfc-wip

