
Confidential + Proprietary

Task Migration at Scale Using CRIU
Linux Plumbers Conference 2018

Victor Marmol Andy Tucker
vmarmol@google.com agtucker@google.com

2018-11-15

Confidential + Proprietary

Who we are

Outside of Google, we’ve worked on open source cluster management and
containers

2

lmctfy

Confidential + Proprietary

Who we are

Inside Google: we’re part of the Borg team

● Manages all compute jobs
● Runs on every server

Images by Connie Zhou3

Confidential + Proprietary

What is Borg?

Google’s cluster management system
● Borgmaster: Cluster control and main API

entrypoint
● Borglet: On-machine management daemon
● Suite of tools and UIs for managing jobs
● Many purpose-built platforms created on top of

Borg
● Everything runs on Borg and everything runs in

containers

4

Confidential + Proprietary

Borg Machine

Borg basics

Base compute primitive: Task

● A priority signals how quickly a task should
schedule

● It’s appclass describes a task as either
serving (latency sensitive) or batch

● Static content/binaries provided by
packages

● A container isolates a task’s resources
● Native Linux processes
● Share an IP with the machine, ports

are allocated for each task

Task

Container

Processes Packages

Allocated Ports

5

Processes
Processes

Processes

Packages
Packages

Packages

Confidential + Proprietary

Borg basics: evictions

When a task is forcefully terminated by Borg
● Typically receive a notification: 1-5min
● Our SLO allows for quite a few evictions
● Applications must handle them

Reasons for evictions
● Preemption: a higher priority task needs the resources
● Software upgrades (e.g.: kernel, firmware)
● Re-balancing for availability or performance

6

Confidential + Proprietary

Evictions are impactful and hard to handle

Technical Complexity
● Handling evictions requires state management

○ How and what state to serialize and where to store it

● Application-specific and not very reusable

Lost Compute
● Batch jobs run at lower priorities and get preempted often
● Even platforms that handle them for users, don’t do a great job

Task 0 Shard 1 Task 2 Task 3 Task 4Evicted!

Compute is lost... 7

Confidential + Proprietary

Migrations to avoid evictions

Transparently replace evictions with migration

Native task migration offering in Borg
● Borg controls the eviction → always knows when to migrate
● Native management of state allows reuse for all workloads

Various possible mechanisms
● Checkpoint/restore

○ Pause application, transfer state, resume
○ Long blackout period, no brownout

● Live
○ Very short blackout, but with a longer brownout
○ Very low impact to applications

8

Confidential + Proprietary

Challenges with task migration

Migrating network connections

Port collisions and port use

Storage migration is slow

Must virtualize machine-local resources

Linux process state hard to migrate

9

Confidential + Proprietary

Challenges with task migration

Migrating network connections

Port collisions and port use

Storage migration is slow

Must virtualize machine-local resources

Linux process state hard to migrate

Little to no local storage

Linux namespaces

CRIU!

NET namespaces and IPv6 per-container

Drop the connection, user handles reconnections

10

Confidential + Proprietary

Migration
Workflow

11

Confidential + Proprietary

Machine A

Task Migration
Checkpoint/Restore

12

Confidential + Proprietary

Machine A

Task

Isolated Task Environment
● Linux namespaces
● Little local storage
● IPv6
● Google libraries (e.g.: Stubby/gRPC)

13

Confidential + Proprietary

Machine A

Task

Checkpoint
● Pause task

14

Confidential + Proprietary

Machine A

Checkpoint
● Pause task
● Serialize stateTask

15

Confidential + Proprietary

Machine A

Checkpoint
● Pause task
● Serialize state
● Upload to distributed storage

Task

Colossus

16

Confidential + Proprietary

Machine A

Colossus

17

Confidential + Proprietary

Colossus

Migration
● Borgmaster chooses new machine to

schedule the task.

Machine B

18

Confidential + Proprietary

Colossus

Machine B

Restore
● Download from distributed storage

Task

19

Confidential + Proprietary

Machine B

Restore
● Download from distributed storage
● Deserialize state Task

20

Confidential + Proprietary

Machine B

Restore
● Download from distributed storage
● Deserialize state
● Continue running task

Task

21

Confidential + Proprietary

Machine B

Isolated Task Environment
● Machine is opaque to the task
● Your local data travels with the task
● Your IP changes
● Google libraries re-establish

connections

Task

22

Confidential + Proprietary

Task

IPv6 + NET namespace

Networking

Networking @ Google
● Standardized RPC implementation: Stubby/gRPC
● Nearly all communication is RPC
● Unique IPv6 address per task
● BNS: Borg DNS, used by RPC layer

Task Migration
● Stubby/gRPC automatically reconnects
● Reconnect is transparent to users
● IP address changes, but this is rarely a problem

23

Network

Process

Stubby/gRPC Library

Confidential + Proprietary

Storage

Storage @ Google: Minimized local storage
● Most tasks are stateless, few require local

SSD/HDD
● Those that require state use our remote storage

stacks (e.g.: Colossus, Spanner)
● Small local storage is offered via tmpfs

Task migration
● Lack of local storage greatly simplifies work
● Remote storage stacks use RPC and thus recover

gracefully
● Small local storage is migrated with task

24

Task

Colossus

Process

Stubby/gRPC Library

Spanner

Tmpfs scratch space

PD

Confidential + Proprietary

Task environment

Container
● Primarily used for resource isolation
● Full namespaces applied

Security
● Root is not mapped into user namespace
● Capabilities are strictly limited

Root filesystem
● Separate from the host machine’s
● Built and bundled by the task as a package

25

Task

Container
full cgroups + full namespaces

Process
no root + limited caps

Isolated Filesystem

Confidential + Proprietary

CRIU

Checkpoint/Restore in User Space
● Used to serialize/deserialize the task’s process

Security and isolation
● Run inside a task’s container
● Run with minimal privileges

The Migrator
● Injected into task during a migration, orchestrates

the migration
● Manages execution of CRIU
● Encrypts and compresses checkpoint on the fly

○ Pretends to be a CRIU pageserver 26

Task

Container

Borglet [root]

Process

Migrator [root]

CRIU

Colossus

Process [user]

CRIU [user]

Confidential + Proprietary

In practice today

Migrations take 1-2min and succeed 90%+ of the time

Where the time goes
● Checkpoint/restore is relatively fast for well-behaved tasks
● Writing/reading to remote storage dominates checkpoint/restore
● Scheduling delays are also a large source of latency

Causes of failures
● Timeouts from high task resource usage (e.g.: threads, memory)
● Different host environments
● Misc failures in serialization (e.g.: unsupported features)

27

Confidential + Proprietary

Users

Works well for batch jobs
● Latency tolerant, longer-running, and lower priority
● Some are highly sharded and see many evictions
● Long pipelines suffer when some parts are evicted

User feedback
● They love it! Super simple to adopt
● Desire for advanced features

○ Migration notifications
○ User-controlled pause/resume

Not a great offering for latency-sensitive jobs

28

1s

10s

1m

3m

10m

B
at

ch
 /

LT
LS

Confidential + Proprietary

Adoption challenges

Handling connection failures
● In theory: users are taught to expect failures
● In practice: users don’t handle failures well

○ Expect them not to occur and reset their state when they do

Isolating task environment
● Users make assumptions about the underlying host

○ Services are available via localhost
○ Expecting host:port to work

● Users don’t expect the underlying host to change at runtime
○ Certain features detected at startup and never refreshed (e.g.: kernel, CPU, location)

29

Confidential + Proprietary

Experience with CRIU

In one word? AMAZING!
● Mostly worked out of the box with few changes
● Reliability and performance have been great in production
● Community has been helpful and quick to fix issues

Our changes
● Performance improvements for checkpoint/restore
● Increasing/improving some limitations (see next slide)
● Most patches sent upstream

30

Confidential + Proprietary

CRIU security

CRIU suggested to run as root
● Security auditing found a series of bugs
● A malicious task can hijack a CRIU process

Recommendation
● Run CRIU as the task’s user
● Run in user namespace without root mapped in
● Trim privileges to minimal set

31

Task

Container

Borglet [root]

Process [user]

Migrator [root]

CRIU [user]

Confidential + Proprietary

What could do with improvements

Performance
● Some expensive operations remain, some have kernel limitations

○ e.g.: waitpid on all threads is O(n2)

Security
● Reducing need for root and elevated capabilities
● Not well tested in this setup

Misc
● Contributing patches back is a bit hard

32

Confidential + Proprietary

What could do with improvements

Live migration
● Parts of incremental restore are very, very difficult
● Lots of work ahead to do the type of brownout used in VM live migration today

Handling time
● Hard to abstract away many of the time HW counters
● Time namespaces to the rescue?

33

Confidential + Proprietary

Future work

Increasing adoption internally
● Reduce lost compute and simplify user tasks
● Targeting on-by-default for large batch workloads

Machine-to-machine migration
● Skip the distributed storage of the checkpoint
● Reduces migration times to ~30s

Live migration
● Able to address latency sensitive workloads
● Will require some work in our stack and in CRIU

34

Confidential + Proprietary

Questions?

Native task migration offering in Borg
● Reduces compute lost to evictions
● Simplifies task handling of preemptions
● Addresses most batch workloads
● Serving workloads need live migration

CRIU
● Works amazingly well out of the box
● Security an area of investment
● We are excited about and look forward to live migration!

Victor Marmol
vmarmol@google.com

Andy Tucker
agtucker@google.com

35

