
Improving Graphics Interactivity
It's all in the Timing

Keith Packard
keithp.com
Valve



Introduction

● What do we want?
– Every frame displayed precisely when the application wants it.
– Constant frame rate.

● Why is this hard?
– Lots of moving parts:

● application scene changes
● compositing environment changes
● power/thermal management

– Asynchronous processing
● Applications queue rendering to GPU
● Display must wait for GPU completion



Direct with Flip



Direct with Copy



Missing a Frame



Displaying a Frame Early



Requirements

● Tell apps when vblank will be
● Allow apps to specify when frames should be 

displayed
● Get frames displayed on time
● Tell apps when frames were displayed

– And when rendering was complete, in the same 
time domain



OpenGL

● GLX_OML_sync_control
– Specify target present frame count
– Avoids early frame presentation

● But, no feedback about when frames were 
actually presented
– Many kludges required to guess

● GLX_EXT_swap_control
– Sets (min) number of frames per presentation
– No feedback on actual presentation time.



Vulkan

● GOOGLE_display_timing
– Specify absolute (CLOCK_MONOTONIC) time for frame
– Feedback about when frames were presented

● May be delayed by a long time (but not with Mesa).

● Clocking application rendering
– Best practice today uses vblank fences

● Using EXT_display_control
● Which only works for direct display
● And doesn't say whether a present happened

– Want something triggered by present
● That turns out to be hard to specify

● EXT_calibrated_timestamps
– Get GPU/OS clocks values for the “same time”
– Allows conversion between GPU and OS time domains



Old Vulkan Loop

frame_step = 16.67 ms 
current_time = 0
while(running) {

RenderFrame(frame_step);
current_time += frame_step;
PresentFrame();
frame_step = LengthOfThisFrame();

}



New Vulkan Loop

frame_step = 16.67 ms
current_time = 0
while(running) {

RenderFrame(current_time);
current_frame_id = PresentFrame(current_time);
history = QueryFrameInfos();
frame_step = FrameTimingHeuristics(history);
current_time += frame_step;

}



X

● Present extension spec is ready
– Specify target frame for PresentPixmap
– Provides feedback on when PresentPixmap was 

processed
● But the implementation lags

– When the desktop is composited



X with Flip



X with Copy



Ideal Composited



Current X Composited



Current X Compositing Process

● Each app rendering request generates 
damage events to compositor

● Compositor collects damage
● At 'suitable time', compositor draws and calls 

PresentPixmap



Simple X Kludge

● Send damage immediately at PresentPixmap time
– Compositor can start building the next frame 

immediately
● Send Present event at next vblank

– Assumes that compositor succeeded
● This fixes the frame delay

– Most of the time
– When the system isn't busy
– When the app doesn't ask for a delay



Slightly better X Kludge

● Pend Damage in X server until 'the right 
time'

● Deliver damage to compositor. Remember 
which damage was sent.

● Send Present events to apps at the same time 
we send Present event to compositor

● No changes in compositor required



Principled X Fix

● Mark damage events with sequence numbers
● Change compositor to notify X server which 

damage sequence is processed by 
PresentPixmap

● X server can associate compositor 
PresentPixmap with app PresentPixmaps and 
deliver correct events.



When is The “Right Time”?

● At some fixed point in the frame?
– But compositor operations may vary

● At the latest possible point in the frame?
– Estimate compositor time based on previous frames and 

amount of change?
● When InputFocus app calls PresentPixmap?

– Likely to be where the user is working
– Have the app inform on plans?
– Estimate based on previous app actions?
– Fallback to other method, or drop frame?



Linux Flip API

● Current API is awkward
– Finite event limit in kernel mixes flips and vblank notifies
– Applications must work-around in user space

● Test for failure, attempt to empty pending events, retry

– Times in µS instead of nS
● Doesn't match Vulkan time precision

● Single queue spot
– Queue other buffers in user space

● No 'unqueue'
– Commit to planned frame up front

● Blocks waiting for rendering(?)
– The non-atomic path does
– And I think the atomic does as well.

● Cannot actually support “Mailbox” mode.



Queue without blocking

● Kernel can move to HW when rendering 
completes.

● Allow user space to continue.
● Alternative is to have user space take an 

event and delay queuing until then.



Multiple flips queued

● For same frame
– Kernel picks last one ready at vblank
– Idles (and notifies) when possible

● For future frames
– Allow user space to go idle for longer



Cancel queued entries

● Useful when queued for many future frames
– avoid displaying from terminated apps

● Necessary if we don't get multi-queue
– Handle all of that from user space



Summary

● Extend Vulkan to expose existing X 
capabilities

● Fix timing under composited X
● Enhance Linux flip API

– Make flips more reliable
– Support Mailbox mode
– Provide ns resolution



Thanks!

Keith Packard
keithp@keithp.com

Valve

mailto:keithp@keithp.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

