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Introduction

● What do we want?
– Every frame displayed precisely when the application wants it.
– Constant frame rate.

● Why is this hard?
– Lots of moving parts:

● application scene changes
● compositing environment changes
● power/thermal management

– Asynchronous processing
● Applications queue rendering to GPU
● Display must wait for GPU completion



Direct with Flip



Direct with Copy



Missing a Frame



Displaying a Frame Early



Requirements

● Tell apps when vblank will be
● Allow apps to specify when frames should be 

displayed
● Get frames displayed on time
● Tell apps when frames were displayed

– And when rendering was complete, in the same 
time domain



OpenGL

● GLX_OML_sync_control
– Specify target present frame count
– Avoids early frame presentation

● But, no feedback about when frames were 
actually presented
– Many kludges required to guess

● GLX_EXT_swap_control
– Sets (min) number of frames per presentation
– No feedback on actual presentation time.



Vulkan

● GOOGLE_display_timing
– Specify absolute (CLOCK_MONOTONIC) time for frame
– Feedback about when frames were presented

● May be delayed by a long time (but not with Mesa).

● Clocking application rendering
– Best practice today uses vblank fences

● Using EXT_display_control
● Which only works for direct display
● And doesn't say whether a present happened

– Want something triggered by present
● That turns out to be hard to specify

● EXT_calibrated_timestamps
– Get GPU/OS clocks values for the “same time”
– Allows conversion between GPU and OS time domains



Old Vulkan Loop

frame_step = 16.67 ms 
current_time = 0
while(running) {

RenderFrame(frame_step);
current_time += frame_step;
PresentFrame();
frame_step = LengthOfThisFrame();

}



New Vulkan Loop

frame_step = 16.67 ms
current_time = 0
while(running) {

RenderFrame(current_time);
current_frame_id = PresentFrame(current_time);
history = QueryFrameInfos();
frame_step = FrameTimingHeuristics(history);
current_time += frame_step;

}



X

● Present extension spec is ready
– Specify target frame for PresentPixmap
– Provides feedback on when PresentPixmap was 

processed
● But the implementation lags

– When the desktop is composited



X with Flip



X with Copy



Ideal Composited



Current X Composited



Current X Compositing Process

● Each app rendering request generates 
damage events to compositor

● Compositor collects damage
● At 'suitable time', compositor draws and calls 

PresentPixmap



Simple X Kludge

● Send damage immediately at PresentPixmap time
– Compositor can start building the next frame 

immediately
● Send Present event at next vblank

– Assumes that compositor succeeded
● This fixes the frame delay

– Most of the time
– When the system isn't busy
– When the app doesn't ask for a delay



Slightly better X Kludge

● Pend Damage in X server until 'the right 
time'

● Deliver damage to compositor. Remember 
which damage was sent.

● Send Present events to apps at the same time 
we send Present event to compositor

● No changes in compositor required



Principled X Fix

● Mark damage events with sequence numbers
● Change compositor to notify X server which 

damage sequence is processed by 
PresentPixmap

● X server can associate compositor 
PresentPixmap with app PresentPixmaps and 
deliver correct events.



When is The “Right Time”?

● At some fixed point in the frame?
– But compositor operations may vary

● At the latest possible point in the frame?
– Estimate compositor time based on previous frames and 

amount of change?
● When InputFocus app calls PresentPixmap?

– Likely to be where the user is working
– Have the app inform on plans?
– Estimate based on previous app actions?
– Fallback to other method, or drop frame?



Linux Flip API

● Current API is awkward
– Finite event limit in kernel mixes flips and vblank notifies
– Applications must work-around in user space

● Test for failure, attempt to empty pending events, retry

– Times in µS instead of nS
● Doesn't match Vulkan time precision

● Single queue spot
– Queue other buffers in user space

● No 'unqueue'
– Commit to planned frame up front

● Blocks waiting for rendering(?)
– The non-atomic path does
– And I think the atomic does as well.

● Cannot actually support “Mailbox” mode.



Queue without blocking

● Kernel can move to HW when rendering 
completes.

● Allow user space to continue.
● Alternative is to have user space take an 

event and delay queuing until then.



Multiple flips queued

● For same frame
– Kernel picks last one ready at vblank
– Idles (and notifies) when possible

● For future frames
– Allow user space to go idle for longer



Cancel queued entries

● Useful when queued for many future frames
– avoid displaying from terminated apps

● Necessary if we don't get multi-queue
– Handle all of that from user space



Summary

● Extend Vulkan to expose existing X 
capabilities

● Fix timing under composited X
● Enhance Linux flip API

– Make flips more reliable
– Support Mailbox mode
– Provide ns resolution



Thanks!
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