
The hard work behind
large physical memory
allocations in the kernel

Vlastimil Babka
SUSE Labs

vbabka@suse.cz

2

Physical Memory Allocator

• Physical memory is divided into several zones
‒ 1+ zone per NUMA node

• Binary buddy allocator for pages in each zone
‒ Free base pages (e.g. 4KB) coalesced to groups of power-of-2

pages (naturally aligned), put on free lists

‒ Exponent = page order; 0 for 4KB → 10 for 4MB pages

‒ Good performance, finds page of requested order instantly

3

Physical Memory Allocator

• Physical memory is divided into several zones
‒ 1+ zone per NUMA node

• Binary buddy allocator for pages in each zone
‒ Free base pages (e.g. 4KB) coalesced to groups of power-of-2

pages (naturally aligned), put on free lists

‒ Exponent = page order; 0 for 4KB → 10 for 4MB pages

‒ Good performance, finds page of requested order instantly

free_list

4

Physical Memory Allocator

• Physical memory is divided into several zones
‒ 1+ zone per NUMA node

• Binary buddy allocator for pages in each zone
‒ Free base pages (e.g. 4KB) coalesced to groups of power-of-2

pages (naturally aligned), put on free lists

‒ Exponent = page order; 0 for 4KB → 10 for 4MB pages

‒ Good performance, finds page of requested order instantly

free_list [0]

free_list [1]

free_list [2]

5

Physical Memory Allocator

• Physical memory is divided into several zones
‒ 1+ zone per NUMA node

• Binary buddy allocator for pages in each zone
‒ Free base pages (e.g. 4KB) coalesced to groups of power-of-2

pages (naturally aligned), put on free lists

‒ Exponent = page order; 0 for 4KB → 10 for 4MB pages

‒ Good performance, finds page of requested order instantly

• Problem: allocations of order > 0 may fail due to
(external) memory fragmentation
‒ There is enough free memory, but not contiguous

9 pages free, yet
no order-3 page

6

Why We Need High-order Allocations?

• Huge pages for userspace (both hugetlbfs and THP)
‒ 2MB is order-9; 1GB is order-18 (but max order is 10...)

• Other physically contiguous area of memory
‒ Buffers for hardware that requires it (no scatter/gather)

‒ Potentially page cache (64KB?)

• Virtually contiguous area of memory
‒ Kernel stacks until recently (order-2 on x86), now vmalloc

‒ SLUB caches (max 32KB by default) for performance reasons

‒ Fallback to smaller sizes when possible – generally advisable

‒ vmalloc is a generic alternative, but not for free

‒ Limited area (on 32bit), need to allocate and setup page tables…

‒ Somewhat discouraged, but now a kvmalloc() helper exists

7

Example: Failed High-order Allocation
[874475.784075] chrome: page allocation failure: order:4, mode:0xc0d0
[874475.784079] CPU: 4 PID: 18907 Comm: chrome Not tainted 3.16.1-gentoo #1
[874475.784081] Hardware name: Dell Inc. OptiPlex 980 /0D441T, BIOS A15 01/09/2014
[874475.784318] Node 0 DMA free:15888kB min:84kB low:104kB high:124kB active_anon:0kB inactive_anon:0kB

active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15988kB managed:15904kB
mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:16kB
kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0
all_unreclaimable? Yes
[874475.784322] lowmem_reserve[]: 0 3418 11929 11929
[874475.784325] Node 0 DMA32 free:157036kB min:19340kB low:24172kB high:29008kB active_anon:1444992kB

inactive_anon:480776kB active_file:538856kB inactive_file:513452kB unevictable:0kB isolated(anon):0kB isolated(file):0kB
present:3578684kB managed:3504680kB mlocked:0kB dirty:1304kB writeback:0kB mapped:157908kB shmem:85752kB
slab_reclaimable:278324kB slab_unreclaimable:20852kB kernel_stack:4688kB pagetables:28472kB unstable:0kB bounce:0kB
free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
[874475.784329] lowmem_reserve[]: 0 0 8510 8510

●[874475.784332] Node 0 Normal free:100168kB min:48152kB low:60188kB high:72228kB active_anon:4518020kB
inactive_anon:746232kB active_file:1271196kB inactive_file:1261912kB unevictable:96kB isolated(anon):0kB isolated(file):0kB
present:8912896kB managed:8714728kB mlocked:96kB dirty:5224kB writeback:0kB mapped:327904kB shmem:143496kB
slab_reclaimable:502940kB slab_unreclaimable:52156kB kernel_stack:11264kB pagetables:70644kB unstable:0kB
bounce:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
[874475.784338] Node 0 DMA: 0*4kB 0*8kB 1*16kB (U) 2*32kB (U) 1*64kB (U) 1*128kB (U) 1*256kB (U) 0*512kB 1*1024kB

(U) 1*2048kB (R) 3*4096kB (M) = 15888kB
[874475.784348] Node 0 DMA32: 31890*4kB (UEM) 3571*8kB (UEM) 31*16kB (UEM) 16*32kB (UMR) 6*64kB (UEMR)

1*128kB (R) 0*256kB 0*512kB 1*1024kB (R) 0*2048kB 0*4096kB = 158672kB
[874475.784358] Node 0 Normal: 22272*4kB (UEM) 726*8kB (UEM) 75*16kB (UEM) 24*32kB (UEM) 1*64kB (M) 0*128kB

0*256kB 0*512kB 0*1024kB 0*2048kB 1*4096kB (R) = 101024kB
[874475.784378] [drm:radeon_cs_ioctl] *ERROR* Failed to parse relocation -12!

8

Enabling High-Order Allocations

• Prevent memory fragmentation?
‒ Buddy allocator design helps by splitting the smallest pages

‒ Works only until memory becomes full (which is desirable)

• Reclaim contiguous areas?
‒ LRU based reclaim → pages of similar last usage time (age)

not guaranteed to be near each other physically

‒ “Lumpy reclaim” did exist, but it violated the LRU aging

• Defragment memory by moving pages around?
‒ Memory compaction can do that within each zone

‒ Relies on page migration functionality

9

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

10

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Initial scanners'

positions

11

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Free pages are

skipped

12

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Page isolated from

LRU onto private list

13

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Page that cannot

be isolated

14

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Isolated enough,

switch to free
scanner

15

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Split to base pages

and isolate them

16

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
We have enough,

time to migrate

17

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
We have enough,

time to migrate

18

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Page freed and

merged

19

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfn
Page freed and

merged

20

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfnContinue with
migration scanner

21

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

migrate_pfn free_pfnScanners have met,
terminate compaction

22

Memory Compaction Overview

• Execution alternates between two page (pfn) scanners

• Migration scanner looks for migration source pages
‒ Starts at beginning (first page) of a zone, moves towards end

‒ Isolates movable pages from their LRU lists

• Free scanner looks for migration target pages
‒ Starts at the end of zone, moves towards beginning

‒ Isolates free pages from buddy allocator (splits as needed)

• Stops when scanner positions cross each other
‒ Or, when free page of requested order has been created

‒ Or due to lock contention, exhausted timeslice, fatal signal...

23

Memory Compaction Limitations

• Only a subset of pages can be isolated and migrated
‒ Pages on LRU lists (user-space mapped, either anonymous or

page cache)

‒ Pages marked with PageMovable “flag”

‒ Currently just zsmalloc (used by zram and zswap) and virtio balloon pages

‒ No other page references (pins) except from mappings, only
clean pages on some filesystems…

• A single non-migratable page in an order-9 block can
prevent allocating a whole huge page there, resulting
in permanent fragmentation

• Solution: keep such pages close together
‒ Page grouping by mobility

24

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

25

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

Free pages
on MOVABLE list

Free pages
on UNMOVABLE list

Pages allocated
as UNMOVABLE

26

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

27

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

UNMOVABLE allocation has to fall back,
finds block with the largest free page

28

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

UNMOVABLE allocation steals all free pages from the pageblock
(too few to also “repaint” the pageblock) and grabs the smallest

29

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

UNMOVABLE allocation steals all free pages from the pageblock
(too few to also “repaint” the pageblock) and grabs the smallest

Movable pageblock Unmovable pageblock

30

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

Some pages are freed within UNMOVABLE
pageblock, so they go to UNMOVABLE freelist

31

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

Some pages are freed within UNMOVABLE
pageblock, so they go to UNMOVABLE freelist

32

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

The next MOVABLE allocation has to
fall back, finds largest UNMOVABLE freepage

33

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

The next MOVABLE allocation has to
fall back, finds largest UNMOVABLE freepage

Movable pageblock Unmovable pageblock

34

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

The next MOVABLE allocation has to
fall back, finds largest UNMOVABLE freepage

Movable pageblock Unmovable pageblock

35

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

Temporary allocation
immediately freed

36

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Free page goes to UNMOVABLE free list
as the pageblock is UNMOVABLE

Movable pageblock Unmovable pageblock

37

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Merging works across migratetypes, the type
that initiated the merge “wins”

Movable pageblock Unmovable pageblock

38

Grouping by Mobility Overview

• Zones divided to pageblocks (order-9 = 2MB on x86)
‒ Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE

migratetype (there are few more for other purposes)

• Separate buddy free lists for each migratetype

• Allocations declare (via GFP flags) intended type
‒ Tries to be satisfied first from matching pageblock type

‒ Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

This page would fit in UNMOVABLE pageblock
but we could not have predicted the pattern

39

Mobility Grouping Fallback Heuristics

• Perfection generally impossible without knowing future
‒ Also the effort has to be reasonable wrt allocation latency

• Find+steal the largest free page of other migratetype
‒ Approximates finding a pageblock with the most free pages

‒ Each migratetype has fallback types ordered by preference

• Can we steal all free pages from the pageblock?
‒ UNMOVABLE and RECLAIMABLE allocations always can.

‒ MOVABLE: the initially found page has to be order >= 4

• Steal X free pages, count Y pages of compatible type
‒ If X + Y ≥ 256 (half of pageblock), change pageblock type

• Allocate one of the stolen pages, splitting the smallest

Open Issues of Compaction
and Mobility Grouping

41

Open Issues: Compaction overhead

• Direct compaction to satisfy a high-order allocation
increases its latency

• Sometimes reported to be unacceptable
‒ Especially for THP page faults, some users disable THP

‒ Defaults have changed not to reclaim+compact directly for THP faults

• Defer more work to kcompactd?
‒ Woken up after kswapd reclaims up to high watermark

‒ Currently makes just one page or highest requested order
available

‒ Count all requests since last wakeup?

‒ Extreme: all pages freed by kswapd consolidated to form free
pageblocks

42

Open Issues: Insufficient Scanning

• When memory full, only first half of zone is scanned
‒ But no success there due to scattered unmovable pages

‒ Second half full, scanners meet roughly in the middle

• Compaction cannot help in this case, what to do?
‒ Change starting points from beginning/end of zone?

‒ Move both scanners in the same direction?

‒ Replace free scanner with direct allocation from freelist?

‒ Free scanner can scan 30x pages compared to migration scanner

• Danger of migrating the same pages back and forth
‒ Or several parallel compactions undoing each other’s work

43

Open Issues: Mobility Grouping

• Problem: unmovable allocation falling back to movable
pageblock when memory is nearly full
‒ It might pollute another “pure” pageblock containing only

movable or free pages, instead of an already polluted one

Movable pageblock Unmovable pageblock Movable pageblock

44

Open Issues: Mobility Grouping

• Problem: unmovable allocation falling back to movable
pageblock when memory is nearly full
‒ It might pollute another “pure” pageblock containing only

movable or free pages, instead of an already polluted one

Movable pageblock Unmovable pageblock Movable pageblock

The next UNMOVABLE allocation will allocate
this page and pollute a movable pageblock

45

Open Issues: Mobility Grouping

• Problem: unmovable allocation falling back to movable
pageblock when memory is nearly full
‒ It might pollute another “pure” pageblock containing only

movable or free pages, instead of an already polluted one

Movable pageblock Unmovable pageblock Movable pageblock

Stealing this page instead would prevent
polluting another movable pageblock

46

Open Issues: Mobility Grouping

• Migrate movable pages away from the fallback
pageblock to accommodate more unmovable pages?
‒ Compaction may not reach the pageblock soon enough

‒ Or not at all, for pageblocks in second half of the zone

‒ Solution: targeted pageblock compaction?

‒ Proposed several times (e.g. via kcompactd), not finalized

• New migratetype MIGRATE_MIXED to always prefer
polluted blocks over clean ones during fallback?
‒ RFC patch in Feb 2017; Panwar et al. ASPLOS’18 paper

‒ How to recognize pageblocks that are no longer polluted, to
convert them back? Possible during compaction scanning.

47

Open Issues: Mobility Grouping

• In general, it’s desirable to have fewer fallback events
‒ Fewer opportunities to pollute MOVABLE pageblock with

UNMOVABLE allocation fallback

‒ Fewer opportunities to steal pages from UNMOVABLE
pageblocks for MOVABLE allocations fallback

‒ Fewer free pages in UMOVABLE pageblocks means further fallbacks

• Recent (last week) series from Mel Gorman
‒ Define a test case – based on fio and THP allocations

‒ Mix of page cache (movable) and slab (unmovable) allocations

‒ Try a different zone (same NUMA node) first, before fallback

‒ Reclaim more memory (via kswapd) when fallback occurs

‒ Stall severely fragmenting allocations to let kswapd progress

‒ Result: ~95% less fragmenting events; more THP success

48

Limits of Mobility Grouping

• Some workloads can defeat even perfect grouping
‒ Occupy lots of memory with unmovable pages (slab objects)

‒ Free them in “random” (or LRU) order

‒ All objects (e.g. 21 dentries) in a page need to be reclaimed to free it

‒ All 512 pages in pageblock need to be reclaimed to allow THP allocation

• Not just a theoretical concern
‒ A user in linux-mm fighting this, and consequences, for months

‒ Tracked down to overnight maintenance via find/du filling
40 GB (of 64) with reclaimable slab (dentries, inodes)

‒ Slowly being reclaimed afterwards, but high fragmentation remains

‒ Excessive reclaim of page cache as a (non-regular) consequence, not yet
clear why, suspected corner case in reclaim/compaction interaction

‒ Explicit echo 2 > /proc/sys/vm/drop_caches “fixes” the issue

49

50

Possible Solutions?

• Make more classes of pages movable
‒ Candidates: vmalloc pages, page tables, where concurrent

access could be trapped and delayed to allow their migration

• Make certain slab objects movable?
‒ Very complex, needs tracking all pointers to the objects

‒ RFC posted in Dec 2017 for XArray (by Christopher Lameter)

• Targeted reclaim of slab objects?
‒ Easier, but same cons as lumpy reclaim of page cache

• Tweak reclaim speed / prevent unchecked growth of
slab caches
‒ Some recent efforts for negative dentries (Waiman Long)

‒ Might help in this particular case, but not in general?

Thank you.

51

Questions?

