The hard work behind
large physical memory

allocations In the kernel

Vlastimil Babka
SUSE Labs
vbabka@suse.cz

Physical Memory Allocator

- Physical memory is divided into several zones
- 1+ zone per NUMA node

- Binary buddy allocator for pages in each zone

- Free base pages (e.g. 4KB) coalesced to groups of power-of-2
pages (naturally aligned), put on free lists

- Exponent = page order; 0 for 4KB - 10 for 4MB pages

- Good performance, finds page of requested order instantly

Physical Memory Allocator

- Physical memory is divided into several zones
- 1+ zone per NUMA node

- Binary buddy allocator for pages in each zone

- Free base pages (e.g. 4KB) coalesced to groups of power-of-2
pages (naturally aligned), put on free lists

- Exponent = page order; 0 for 4KB - 10 for 4MB pages

- Good performance, finds page of requested order instantly

HE N HeEe

free_list

Physical Memory Allocator

- Physical memory is divided into several zones
- 1+ zone per NUMA node

- Binary buddy allocator for pages in each zone

- Free base pages (e.g. 4KB) coalesced to groups of power-of-2
pages (naturally aligned), put on free lists

- Exponent = page order; 0 for 4KB - 10 for 4MB pages

- Good performance, finds page of requested order instantly

free_list [O]
free_list [1]

free_list [2]

Physical Memory Allocator

- Physical memory is divided into several zones
- 1+ zone per NUMA node

- Binary buddy allocator for pages in each zone

- Free base pages (e.g. 4KB) coalesced to groups of power-of-2
pages (naturally aligned), put on free lists

- Exponent = page order; 0 for 4KB - 10 for 4MB pages

- Good performance, finds page of requested order instantly

- Problem: allocations of order > 0 may fail due to
(external) memory fragmentation

- There is enough free memory, but not contiguous

9 pages free, yet
no order-3 page

T
LY

£ o X B X

Why We Need High-order Allocations?

- Huge pages for userspace (both hugetlbfs and THP)
- 2MB is order-9; 1GB is order-18 (but max order is 10...)

- Other physically contiguous area of memory
- Buffers for hardware that requires it (no scatter/gather)

- Potentially page cache (64KB?)

- Virtually contiguous area of memory
- Kernel stacks until recently (order-2 on x86), now vmalloc
- SLUB caches (max 32KB by default) for performance reasons
- Fallback to smaller sizes when possible — generally advisable

- vmalloc is a generic alternative, but not for free
- Limited area (on 32bit), need to allocate and setup page tables...

- Somewhat discouraged, but now a kvmalloc() helper exists

Example: Failed High-order Allocation

[874475.784075] chrome: page allocation failure: order:4, mode:0xc0d0

[874475.784079] CPU: 4 PID: 18907 Comm: chrome Not tainted 3.16.1-gentoo #1

[874475.784081] Hardware name: Dell Inc. OptiPlex 980 /0D441T, BIOS A15 01/09/2014

[874475.784318] Node 0 DMA free:15888kB min:84kB low:104kB high:124kB active_anon:0kB inactive_anon:0kB
active_file:OkB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15988kB managed:15904kB
mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:16kB
kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB free_cma:0kB writeback tmp:0kB pages_scanned:0
all_unreclaimable? Yes

[874475.784322] lowmem_reserve[]: 0 3418 11929 11929

[874475.784325] Node 0 DMA32 free:157036kB min:19340kB low:24172kB high:29008kB active_anon:1444992kB
inactive_anon:480776kB active_file:538856kB inactive_file:513452kB unevictable:0kB isolated(anon):0kB isolated(file):0kB
present:3578684kB managed:3504680kB mlocked:0kB dirty:1304kB writeback:0kB mapped:157908kB shmem:85752kB
slab_reclaimable:278324kB slab_unreclaimable:20852kB kernel_stack:4688kB pagetables:28472kB unstable:0kB bounce:0kB
free_cma:0kB writeback _tmp:0kB pages_scanned:0 all_unreclaimable? no

[874475.784329] lowmem_reserve[]: 0 0 8510 8510

*[874475.784332] Node 0 Normal free:100168kB min:48152kB low:60188kB high:72228kB active_anon:4518020kB
inactive_anon:746232kB active file:1271196kB inactive_file:1261912kB unevictable:96kB isolated(anon):0kB isolated(file):0kB
present:8912896kB managed:8714728kB mlocked:96kB dirty:5224kB writeback:0kB mapped:327904kB shmem:143496kB
slab_reclaimable:502940kB slab_unreclaimable:52156kB kernel_stack:11264kB pagetables:70644kB unstable:0kB
bounce:0kB free_cma:0kB writeback _tmp:0kB pages_scanned:0 all_unreclaimable? no

[874475.784338] Node 0 DMA: 0*4kB 0*8kB 1*16kB (U) 2*32kB (U) 1*64kB (U) 1*128kB (U) 1*256kB (U) 0*512kB 1*1024kB
(V) 1*2048kB (R) 3*4096kB (M) = 15888kB

[874475.784348] Node 0 DMA32: 31890*4kB (UEM) 3571*8kB (UEM) 31*16kB (UEM) 16*32kB (UMR) 6*64kB (UEMR)
1*128kB (R) 0*256kB 0*512kB 1*1024kB (R) 0*2048kB 0*4096kB = 158672kB

[874475.784358] Node 0 Normal: 22272*4kB (UEM) 726*8kB (UEM) 75*16kB (UEM) 24*32kB (UEM) 1*64kB (M) 0*128kB
0*256kB 0*512kB 0*1024kB 0*2048kB 1*4096kB (R) = 101024kB

[874475.784378] [drm:radeon_cs_ioctl] *ERROR* Failed to parse relocation -12!

Enabling High-Order Allocations

- Prevent memory fragmentation?
- Buddy allocator design helps by splitting the smallest pages

- Works only until memory becomes full (which is desirable)

- Reclaim contiguous areas”?

- LRU based reclaim — pages of similar last usage time (age)
not guaranteed to be near each other physically

- “Lumpy reclaim” did exist, but it violated the LRU aging
- Defragment memory by moving pages around?
- Memory compaction can do that within each zone

- Relies on page migration functionality

T
LY

£ o X B X

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

v TN k
Initial scanners'
migrate_pfn positions free_pfn
_

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

a TN k
/ Free pages are
migrate_pfn skipped free_pfn
_

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

/ Page isolated from \
migrate_pfn LRU onto private list free_pfn

e o ——

o P
a

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

/’ Page that cannot \
migrate_pfn | — be isolated free_pfn

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners

- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end

- Isolates movable pages from their LRU lists

- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

migrate_pfn

Isolated enough,
switch to free
scanner

free_pfn

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

Jgplit to base pages

free_pfn

migrate_pfn | — @nd isolate them

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

We have enough,
time to migrate

migrate_pfn | — free_pfn

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

We have enough,
time to migrate

migrate_pfn | — free_pfn

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

\/Page freed and
migrate_pfn | — merged free_pfn

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

\/Page freed and
migrate_pfn | — merged free_pfn

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

er

migration scann

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages

- Starts at the end of zone, moves towards beginning

- Isolates free pages from buddy allocator (splits as needed)

migrate_pfn @canners have met,

free_pfn

terminate compaction

Memory Compaction Overview

- Execution alternates between two page (pfn) scanners
- Migration scanner looks for migration source pages

- Starts at beginning (first page) of a zone, moves towards end
- Isolates movable pages from their LRU lists
- Free scanner looks for migration target pages
- Starts at the end of zone, moves towards beginning
- Isolates free pages from buddy allocator (splits as needed)
- Stops when scanner positions cross each other

- Or, when free page of requested order has been created

- Or due to lock contention, exhausted timeslice, fatal signal...

Memory Compaction Limitations

- Only a subset of pages can be isolated and migrated

- Pages on LRU lists (user-space mapped, either anonymous or
page cache)

- Pages marked with PageMovable “flag”

- Currently just zsmalloc (used by zram and zswap) and virtio balloon pages

- No other page references (pins) except from mappings, only
clean pages on some filesystems...

- A single non-migratable page in an order-9 block can

prevent allocating a whole huge page there, resulting
In permanent fragmentation

- Solution: keep such pages close together
- Page grouping by mobility

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

Free pages Pages allocated Free pages
on MOVABLE list as UNMOVABLE on UNMOVABLE list

g

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

UNMOVABLE allocation has to fall back,
finds block with the largest free page

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

I

EJNMOVABLE allocation steals all free pages from the pageblock
(too few to also “repaint” the pageblock) and grabs the smallest

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

I

EJNMOVABLE allocation steals all free pages from the pageblock
(too few to also “repaint” the pageblock) and grabs the smallest

.,.«

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

I: Some pages are freed within UNMOVABLE
pageblock, so they go to UNMOVABLE freelist

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

I: Some pages are freed within UNMOVABLE
pageblock, so they go to UNMOVABLE freelist

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

~ N

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

- BN

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

> BN

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

Temporary allocation
immediately freed

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

I: Free page goes to UNMOVABLE free list
as the pageblock is UNMOVABLE

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

I: Merging works across migratetypes, the type
that initiated the merge “wins”

Grouping by Mobility Overview

- Zones divided to pageblocks (order-9 = 2MB on x86)

- Each marked as MOVABLE, UNMOVABLE or RECLAIMABLE
migratetype (there are few more for other purposes)

- Separate buddy free lists for each migratetype
- Allocations declare (via GFP flags) intended type

- Tries to be satisfied first from matching pageblock type

- Fallback to other type when matching pageblocks full

Movable pageblock Unmovable pageblock

This page would fit in UNMOVABLE pageblock:l
but we could not have predicted the pattern

Mobility Grouping Fallback Heuristics

- Perfection generally impossible without knowing future
- Also the effort has to be reasonable wrt allocation latency

- Find+steal the largest free page of other migratetype
- Approximates finding a pageblock with the most free pages

- Each migratetype has fallback types ordered by preference

- Can we steal all free pages from the pageblock?
- UNMOVABLE and RECLAIMABLE allocations always can.
- MOVABLE: the initially found page has to be order >=4

- Steal X free pages, count Y pages of compatible type
- If X +Y = 256 (half of pageblock), change pageblock type

- Allocate one of the stolen pages, splitting the smallest

:‘r‘ .

Open Issues of Compaction

and Mobllity Grouping

Open Issues: Compaction overhead

- Direct compaction to satisfy a high-order allocation
Increases its latency

- Sometimes reported to be unacceptable
- Especially for THP page faults, some users disable THP
- Defaults have changed not to reclaim+compact directly for THP faults
» Defer more work to kcompactd?
- Woken up after kswapd reclaims up to high watermark

- Currently makes just one page or highest requested order
available

- Count all requests since last wakeup?

- Extreme: all pages freed by kswapd consolidated to form free
pageblocks

Open Issues: Insufficient Scanning

* When memory full, only first half of zone is scanned
- But no success there due to scattered unmovable pages

- Second half full, scanners meet roughly in the middle

- Compaction cannot help in this case, what to do?
- Change starting points from beginning/end of zone?
- Move both scanners in the same direction?

- Replace free scanner with direct allocation from freelist?

- Free scanner can scan 30x pages compared to migration scanner

- Danger of migrating the same pages back and forth

- Or several parallel compactions undoing each other’s work

Open Issues: Mobility Grouping

- Problem: unmovable allocation falling back to movable
pageblock when memory is nearly full

- It might pollute another “pure” pageblock containing only
movable or free pages, instead of an already polluted one

Movable pageblock

Unmovable pageblock I Movable pageblock

Open Issues: Mobility Grouping

- Problem: unmovable allocation falling back to movable
pageblock when memory is nearly full

- It might pollute another “pure” pageblock containing only
movable or free pages, instead of an already polluted one

Movable pageblock Unmovable pageblock I Movable pageblock

The next UNMOVABLE allocation will allocate
this page and pollute a movable pageblock

Open Issues: Mobility Grouping

- Problem: unmovable allocation falling back to movable
pageblock when memory is nearly full

- It might pollute another “pure” pageblock containing only
movable or free pages, instead of an already polluted one

Movable pageblock Unmovable pageblock I Movable pageblock

I: Stealing this page instead would prevent

polluting another movable pageblock

Open Issues: Mobility Grouping

- Migrate movable pages away from the fallback
pageblock to accommodate more unmovable pages?

- Compaction may not reach the pageblock soon enough
- Or not at all, for pageblocks in second half of the zone

- Solution: targeted pageblock compaction?

- Proposed several times (e.g. via kcompactd), not finalized

- New migratetype MIGRATE_MIXED to always prefer
polluted blocks over clean ones during fallback?

- RFC patch in Feb 2017; Panwar et al. ASPLOS’18 paper

- How to recognize pageblocks that are no longer polluted, to
convert them back? Possible during compaction scanning.

Open Issues: Mobility Grouping

- In general, it's desirable to have fewer fallback events

- Fewer opportunities to pollute MOVABLE pageblock with
UNMOVABLE allocation fallback

- Fewer opportunities to steal pages from UNMOVABLE
pageblocks for MOVABLE allocations fallback

- Fewer free pages in UMOVABLE pageblocks means further fallbacks
- Recent (last week) series from Mel Gorman

- Define a test case — based on fio and THP allocations

- Mix of page cache (movable) and slab (unmovable) allocations
- Try a different zone (same NUMA node) first, before fallback
- Reclaim more memory (via kswapd) when fallback occurs
- Stall severely fragmenting allocations to let kswapd progress

- Result: ~95% less fragmenting events; more THP success

Limits of Mobility Grouping

- Some workloads can defeat even perfect grouping

- Occupy lots of memory with unmovable pages (slab objects)

- Free them in “random” (or LRU) order

- All objects (e.g. 21 dentries) in a page need to be reclaimed to free it

- All 512 pages in pageblock need to be reclaimed to allow THP allocation

- Not just a theoretical concern

- A user in linux-mm fighting this, and consequences, for months

- Tracked down to overnight maintenance via find/du filling
40 GB (of 64) with reclaimable slab (dentries, inodes)

- Slowly being reclaimed afterwards, but high fragmentation remains

- Excessive reclaim of page cache as a (non-regular) consequence, not yet
clear why, suspected corner case in reclaim/compaction interaction

- Explicit echo 2 > /proc/sys/vm/drop_caches “fixes” the issue

Memory usage (gigabytes)

40

30

20

10

PO

YT

O
Na

WAL

0 free pages
O page cache
0 reclaimable SLAB

| | | | | I | [
0 2000 4000 6000 8000 10000 12000 14000

vmstat snapshot (5 seconds)

Possible Solutions?

- Make more classes of pages movable

- Candidates: vmalloc pages, page tables, where concurrent
access could be trapped and delayed to allow their migration

- Make certain slab objects movable?
- Very complex, needs tracking all pointers to the objects
- RFC posted in Dec 2017 for XArray (by Christopher Lameter)

- Targeted reclaim of slab objects?

- Easier, but same cons as lumpy reclaim of page cache

- Tweak reclaim speed / prevent unchecked growth of
slab caches

- Some recent efforts for negative dentries (Waiman Long)

- Might help in this particular case, but not in general?

-
ot o

Questions?

Thank you.

