
digitalocean.com

Who stole my CPU?

Leonid Podolny leonid@digitalocean.com

Vineeth Remanan Pillai vineeth@digitalocean.com

Systems Engineering @ DigitalOcean

1

mailto:leonid@digitalocean.com
mailto:vineeth@digitalocean.com

2

digitalocean.com

Introduction

● DigitalOcean

Providing developers and businesses
a reliable, easy-to-use cloud
computing platform of virtual servers
(Droplets), object storage (Spaces),
and more.

● Systems Engineering
○ Responsible for the Hypervisor

and its software stack
○ Host Operating System and

kernel, KVM, qemu, libvirt and
misc services to facilitate VM
hosting

3

digitalocean.com

Agenda

● Steal

○ Definitions

○ Causes

○ Analysis

○ Mitigation strategies

● Mitigation approach in DigitalOcean

○ Octopus: Implementation

○ Octopus: Issues and their resolutions

■ NUMA migrations problem

■ Swapoff enhancements

4

digitalocean.com

What is steal?

The fraction of time a vCPU had to wait for a
physical CPU in a runqueue.

steal, n. :

5

digitalocean.com

What is steal? (cntd.)

● a vCPU is just another host task
● for а guest, the time stops
● exists only within the VM
● reported by the hypervisor

steal, n. :

6

digitalocean.com

Why Steal?

● Obvious reason: More runnable vCPUs than physical
CPUs

● How can we explain steal when the hypervisor has
enough CPU resources to satisfy the runnable but
waiting vCPUs?

7

digitalocean.com

Steal analysis

Steal can be analysed from two different perspectives

● VMs
○ Steal as observed from within the VM
○ Useful for determining if the steal is impacting the VM.

● Hypervisor
○ Sum of steal of individual VMs
○ Useful for determining mitigation approaches

8

digitalocean.com

Steal as seen from the VM

● Busy Steal
○ CPU utilization + steal is close to 100%
○ VM could have made use of the stolen time had it not been stolen

● Idle Steal
○ Idle VM experiencing steal: utilization + steal is significantly below

100%
○ VM could not have used the stolen time even if available.

9

digitalocean.com

Steal as seen from Hypervisor

Total Steal experienced by all VMs in a Hypervisor

● Busy Steal
○ More runnable vCPUs than physical CPUs
○ Not mitigatable in software
○ Migrating VMs out of the busy HV is the probable solution

● Idle Steal
○ Caused due to scheduler limitations, config issues etc
○ Mitigatable in software

10

digitalocean.com

Hypervisor “idle” steal

11

digitalocean.com

Hypervisor “idle” steal: NUMA balancing

● VMs span all the NUMA
nodes by default.

● Linux automatic NUMA
balancing: keep tasks closer
to their memory

○ Memory follow CPU model
○ CPU follow memory model

● Migration threads takes up
cpu, resulting in steal

Node 1Node 0

Socket 0 Socket 1M M

VM

12

digitalocean.com

Hypervisor “idle” steal: NUMA balancing

Node 1Node 0

Socket 0 Socket 1M M

VM

13

● Mitigation
○ Pin VMs to NUMA nodes and
○ Disable NUMA balancing

13

digitalocean.com

Hypervisor “idle” steal
(After disabling automatic NUMA balancing)

14

digitalocean.com

Hypervisor “idle” steal: process grouping

● Cgroups
○ Default cgroups created by libvirt is per-VM
○ Bigger VMs are considered equal in weight to smaller VMs due

to per-VM cgroups

● Example: 8 cpu Hypervisor
○ 8 cpu (800%)
○ 3 VMs

■ 1x 4-vCPU
■ 2x 2-vCPU

cgroup 1
(VM1 [266%])

66% 66% 66% 66%

cgroup 2
(VM2 [266%])

100% 100%

cgroup 3
(VM3 [266%])

100% 100%

15

digitalocean.com

Hypervisor “idle” steal: process grouping (cntd.)

● Mitigation
○ Disable CPU cgroups for VMs

● Side Effects
○ Loses the capability to control VM cpu utilization
○ Autogroup feature kicks in
○ Disabling autogroup feature works fine for newly launched VMs,

but running VMs are still managed by the autogroup

16

digitalocean.com

Hypervisor “idle” steal: process grouping (Contd…)

● Working solution: per-host VM Cgroup
○ Consolidate all vCPUs in one cgroup.
○ CFS allocates CPU proportionally to the number of vCPUs.

● Modified libvirt
○ A tunable to consolidate all vCPUS to one cpu cgroup and all cgroups

parameters are same(default) for all VMs
■ cfs.cfs_period_us, cfs.cfs_quota_us

○ Moves a VM to its own cgroup if any cgroup parameters modified for a VM
○ Moves the VM back to perhost cgroup if the cgroup parameters are

reverted to default

17

digitalocean.com

Hypervisor “idle” steal: process grouping (Contd…)

per-host Cgroup Example

● 8 cpu Hypervisor
○ 8 cpu (800%)
○ 3 VMs

■ 1x 4-vCPU
■ 2x 2-vCPU

PerHost Cgroup

VM1

100% 100% 100% 100%

VM3

100% 100%

VM2

100% 100%

18

digitalocean.com

Hypervisor “idle” steal: per-host cgroup

19

digitalocean.com

Sidenote: CFS & Idle VMs

● On a fully utilized hypervisor, idle VMs might experience
steal because they are penalized by CFS.

● When idle VMs share a hypervisor with busy VMs, they will
be assigned a lower weight as their utilization is low.

○ Results in scheduler latency, when competing with busy VM vCPUs.

20

digitalocean.com

Octopus

● Userspace VM-placement daemon
○ Pins VMs to resources (CPUs, NUMA nodes)
○ As a result, occasionally migrates VMs across sockets

● VM awareness in vCPUs placement
● jiffy-level resolution not needed
● Functionality:

○ NUMA-partitioning
○ utilization tracking on overcommitted fleet
○ CPU-to-vCPU mapping on optimized HVs

21

digitalocean.com

Octopus

● Issues
○ swap usage during NUMA migration
○ OOMs when VM aggressively allocates RAM:

■ when VM allocates RAM faster than RAM is swapped to disk
■ at swapoff phase, when swap is disabled

22

digitalocean.com

Swapoff optimizations

● Swapoff implementation in kernel is not efficient
○ Goes through all process address space for each swap entry
○ For considerably large swap and a heavily loaded hypervisor with

thousands of processes, might take hours or days.

● Usually swapoff happens during system shutdown
● We use it to migrate VMs between NUMA nodes and need it to

be quick.
● Revived a dormant patch and initiated discussions upstream.

○ https://lkml.org/lkml/2018/10/3/638
○ Basic approach is to give a single pass on all process address space and

page in the swapped out pages.

23

https://lkml.org/lkml/2018/10/3/638

digitalocean.com

Failing NUMA migrations

● The process of migrating the RAM of VM between NUMA
nodes might fail, even with swap to back it.

○ A dangerous side effect is OOM kill of VMs

● The placement service makes its best effort to avoid OOM by
tuning the swappiness and pre-calculating available memory
and swap before the migration.

○ Dynamic nature of the hypervisor breaks this approach
○ VM launches and destroys causes all calculations to go wrong

● Efforts started inhouse to have a kernel level mechanism to do
a safe memory migration without OOM and fail gracefully.

○ migrate_pages(2)

24

Questions?

25

Thank you!

26

