
 1

Virtio as a universal communication
format

Michael S. Tsirkin

Consulting Engineer
Chair of Virtio TC

Fall 2018

A study in interface design

Terminology

● Virtion: Asymmetrical two-party interface
● Driver (AKA virtio driver)

submits requests by making them available
– Kernel driver, userspace process, firmware ...

● Device (AKA vhost driver)
uses (processes) requests
– Hypervisor, kernel, another process, PCI device ...

 3

The inexplicable popularity of virtio

● Started around 2007 by Rusty Russell

Guest/Hypervisor interface for VMs
● 2010 vhost: userspace/kernel interface
● 2012 virtio multimedia hardware offload

”cool and random” – Rusty
● 2014 vhost/virtio-user: userspace/userspace
● 2017 vdpa: hardware interface

Virtio
1.0

Network effects

DMA

 FIRMWARE

SLOFSLOF SCSI

SOFTWARE

SPDK

HARDWARE

VDPA Mmedia

Virtio Interface Zoo

block

sock
scsi

serial

balloon

network
filesystem

crypto

entropy

gpu

input

Standards are good!

 6

Motivation: userspace drivers

● Drivers often packaged with application

Unlike kernel: New devices require app
● Kernel has no visibility into device state

● Link with a virtio library and forget
● Snapshot/restore can be made to work (WIP)

 7

Motivation: VM guests

● Pass-through for performance
● Cross-host migration without guest changes
● Multi-vendor clusters supported
● Live migration also works

Hypervisor aware of guest visible state

 8

Motivation: overcommit

● Hardware
● Memory

● Switching to software
● Possibly live (WIP)

Motivation: bugs

● Who’s to blame for a crash?

Buggy card or buggy driver?
● Swap in a different device and find out!
● Software implementations available
● Fix it in the right place

Virtio Properties

● Forward and Backward Compatibility
● PCI for Device Discovery
● Virtqueue Communication
● Reasonable Specification Process

Let’s drill down ...

Virtio feature negotiation

0 1 1 -|-

0..............1...........2.............

DEVICE FEATURES

DRIVER

1 0 1 -|- DRIVER FEATURES

 12

Virtio net: add failover support

● Feature bit: VIRTIO_NET_F_STANDBY = 0
● New (failover aware) device: device features = 0x1
● New driver: supported features = 0x1
● Driver features: 0x1 & 0x1 = 0x1
● Device and driver:

if (driver_features &
 (1 << VIRTIO_NET_F_STANDBY))
 enable failover support

● Updated device & driver: failover enabled!

 13

Compatibility: existing drivers

● Device features = 0x1
● Driver supported = 0x0
● Driver features = 0x0
● 0x0 & (1 << VIRTIO_NET_F_FAILOVER) == 0

● Device: option 1: disable failover: compatible!
● Device: option 2: set status = fail

Not worse than building a new device!
Can suggest upgrading a driver.

 14

Compatibility: existing devices

● Device features: 0x0
● Driver supported: 0x1
● Driver features: 0x0
● 0x0 & (1 << VIRTIO_NET_F_FAILOVER) == 0

● Driver: option 1: disable failover
● Driver: option 2: set status = fail

Can suggest upgrading a device.

 15

Compatibility: virtio 0.9 versus 1.0

● virtio 1.0 – made default Jul 2016
● Switched devices to a different register layout
● Gated by a feature bit:

/* v1.0 compliant. */

#define VIRTIO_F_VERSION_1 32
● No one noticed!

 16

PCI based discovery

● Not the only option
multiple transports supported

● Standard VendorID/DeviceID registers
donated by Red Hat for use by Virtio

● Use these values → drivers will bind to device

 17

Virtqueue ring

 Device and driver write descriptors into a ring
address_lo

address_hi

length

id flags

For out
of order
devices

Mark
descriptor
valid

No locks shared
Notifications identify the ring
Standard for DMA HW

 18

Specification process
do I have to write a spec?

● Absolutely the right thing to do
● Does not have to be step 0!

● Virtio priorities:
– Code compatibility
– IPR compatibility
– Interface compatibility

 19

Code compatibility:
avoid conflicting with others

● New device: reserve an ID. Spec patch:

● Existing device: reserve a feature bit. E.g. :

diff --git a/content.tex b/content.tex
@@ -3022,3 +3022,5 @@ Device ID & Virtio Device \\
 \hline
+23 & misc device \\
+\hline
 \end{tabular}

@@ -4800,5 +4802,6 @@ guest memory statistics
 \item[VIRTIO_BALLOON_F_DEFLATE_ON_OOM (2)] Deflate balloon on
 guest out of memory condition.
+\item[VIRTIO_BALLOON_F_XXXX (3)] Reserved for
+ feature XXXX.
 \end{description}

 20

How to get it in the spec?

● git clone https://github.com/oasis-tcs/virtio-spec
Edit :)

● sh makeall.sh (needs xelatex, e.g. from texlive)
● virtio-comment-subscribe@lists.oasis-open.org
● Patch: virtio-comment@lists.oasis-open.org
● If no comments – email, ask for a vote ballot
● Total time: up to 2 weeks

https://github.com/oasis-tcs/virtio-spec
mailto:virtio-comment-subscribe@lists.oasis-open.org
mailto:virtio-comment@lists.oasis-open.org

 21

IPR compatibility: allow others to
implement compatible devices

● Open-source an implementation
● Subscribe to virtio-dev@lists.oasis.org
● Agree to IPR rules (non-assertion mode)
● Send a copy of the patches (e.g. qemu, linux,

dpdk) to virtio-dev@lists.oasis.org
● Virtio memory and IOMMU at this point now.

mailto:virtio-dev@lists.oasis.org
mailto:virtio-dev@lists.oasis.org

 22

Interface compatibility

● Document assumptions for inter-operability
● Submit as comments
● Virtio membership is not required
● Membership is open - members vote on ballots
● Hints:

– Document device and driver separately
– Use MUST/SHOULD/MAY keywords
– Ask for help!

● Virtio crypto, input, gpu added recently

 23

Work-in-progress

● Platform and hardware specific optimizations
● Vendor-specific issues
● New transports
● New devices

 24

Hardware is special

● Let’s assume a pass-through device
implementing virtio. Shouldn’t this just work?

● Maybe – but not optimally!
● Hypervisor: processes descriptors one by one
● Hardware: can process many in parallel
● Needs to be told how many are available
● Include number of available entries in a kick

 25

Platform issues

● Hardware Virtio device behind a PCI bus:

wmb()
dma_wmb()

● Software Virtio device:

interrupt
smp_wmb()

 26

Cross-vendor compatibility

● Modular interface controlled by feature bits
● Drivers can limit to a subset for consistency

● Report negotiated features:
– cat /sys/bus/pci/devices/0000\:01\:00.0/features

● TODO: report device features

 27

Device quirks

● Don’t do it!
● Mask affected features
● Treat it as a feature

Document in spec
● Blacklist device, use a vendor-specific driver

 28

CFA: transports

● Vhost-user: virtio over unix domain sockets
– QEMU
– DPDK
– SPDK

 29

WIP: devices

● Memory device
● IOMMU device
● 9PFS?
● Audio anyone?

 30

MST’s inbox

● Balloon: page hinting capability
● GPU: EDID reporting
● Network: RSC
● Block: discard+write zeroes

 31

Virtio 1.1 plans

● Freeze spec by end of November 2018
● Public review draft by end of year
● Public review to run until early next year
● Monthly draft snapshots planned

 32

Summary

● Network effects and a set of unique properties
make Virtio a compelling option for new interfaces
– Large Software and Hardware ecosystem

● Join the fun
– Easy to extend
– A lot going on
– Performance + new features

 33

Questions?

 34

Virtio input: add multitouch feature

● Feature bit: VIRTIO_INPUT_F_MULTITOUCH = 0
● New (multi-touch aware) device: device features = 0x1
● New driver: supported features = 0x1
● Driver features: 0x1 & 0x1 = 0x1
● Device and driver:

if (driver_features &
 (1 << VIRTIO_INPUT_F_MULTITOUCH))
 enable multi-touch support

● Updated device & driver: multi-touch enabled!

 35

Compatibility: existing drivers

● Device features = 0x1
● Driver supported = 0x0
● Driver features = 0x0
● 0x0 & (1 << VIRTIO_INPUT_F_MULTITOUCH) == 0

● Device: option 1: disable multi-touch: compatible!
● Device: option 2: set status = fail

Not worse than building a new device!
Can suggest upgrading a driver.

 36

Compatibility: existing devices

● Device features: 0x0
● Driver supported: 0x1
● Driver features: 0x0
● 0x0 & (1 << VIRTIO_INPUT_F_MULTITOUCH) == 0

● Driver: option 1: disable multi-touch
● Driver: option 2: set status = fail

Can suggest upgrading a device.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

