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Terminology

● Virtion: Asymmetrical two-party interface
● Driver (AKA virtio driver)

submits requests by making them available
– Kernel driver, userspace process, firmware ...

● Device (AKA vhost driver)
uses (processes) requests
– Hypervisor, kernel, another process, PCI device ...
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The inexplicable popularity of virtio

● Started around 2007 by Rusty Russell

Guest/Hypervisor interface for VMs
● 2010 vhost: userspace/kernel interface
● 2012 virtio multimedia hardware offload

”cool and random” – Rusty
● 2014 vhost/virtio-user: userspace/userspace
● 2017 vdpa: hardware interface

Virtio 
1.0



  

Network effects
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Virtio Interface Zoo
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Standards are good!
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Motivation: userspace drivers

● Drivers often packaged with application

Unlike kernel: New devices require app
● Kernel has no visibility into device state

● Link with a virtio library and forget
● Snapshot/restore can be made to work (WIP)
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Motivation: VM guests

● Pass-through for performance
● Cross-host migration without guest changes
● Multi-vendor clusters supported
● Live migration also works

Hypervisor aware of guest visible state
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Motivation: overcommit

● Hardware
● Memory

● Switching to software
● Possibly live (WIP)



  

Motivation: bugs

● Who’s to blame for a crash?

Buggy card or buggy driver?
● Swap in a different device and find out!
● Software implementations available
● Fix it in the right place



  

Virtio Properties

● Forward and Backward Compatibility
● PCI for Device Discovery
● Virtqueue Communication
● Reasonable Specification Process

Let’s drill down ...



  

Virtio feature negotiation
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Virtio net: add failover support

● Feature bit: VIRTIO_NET_F_STANDBY = 0
● New (failover aware) device: device features = 0x1
● New driver: supported features = 0x1
● Driver features: 0x1 & 0x1 = 0x1
● Device and driver:

if (driver_features &
            (1 << VIRTIO_NET_F_STANDBY))
     enable failover support

● Updated device & driver: failover enabled! 
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Compatibility: existing drivers

● Device features = 0x1
● Driver supported = 0x0
● Driver features = 0x0
● 0x0 &  (1 << VIRTIO_NET_F_FAILOVER) == 0

● Device: option 1: disable failover: compatible!
● Device: option 2: set status = fail

Not worse than building a new device!
Can suggest upgrading a driver.
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Compatibility: existing devices

● Device features: 0x0
● Driver supported: 0x1
● Driver features: 0x0
● 0x0 &  (1 << VIRTIO_NET_F_FAILOVER) == 0

● Driver: option 1: disable failover
● Driver: option 2: set status = fail

Can suggest upgrading a device.
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Compatibility: virtio 0.9 versus 1.0

● virtio 1.0 – made default Jul 2016
● Switched devices to a different register layout
● Gated by a feature bit:

/* v1.0 compliant. */

#define VIRTIO_F_VERSION_1             32
● No one noticed!
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PCI based discovery

● Not the only option
multiple transports supported

● Standard VendorID/DeviceID registers
donated by Red Hat for use by Virtio

● Use these values → drivers will bind to device
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Virtqueue ring

 Device and driver write descriptors into a ring
address_lo

address_hi

length

id flags

For out 
of order 
devices

Mark 
descriptor 
valid

No locks shared
Notifications identify the ring
Standard for DMA HW
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Specification process
do I have to write a spec? 

● Absolutely the right thing to do
● Does not have to be step 0!

● Virtio priorities:
– Code compatibility
– IPR compatibility
– Interface compatibility
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Code compatibility:
avoid conflicting with others

● New device: reserve an ID. Spec patch:

● Existing device: reserve a feature bit. E.g. :

diff --git a/content.tex b/content.tex
@@ -3022,3 +3022,5 @@ Device ID  &  Virtio Device    \\
 \hline
+23         &   misc device \\
+\hline
 \end{tabular}

@@ -4800,5 +4802,6 @@ guest memory statistics
 \item[VIRTIO_BALLOON_F_DEFLATE_ON_OOM (2) ] Deflate balloon on
     guest out of memory condition.
+\item[VIRTIO_BALLOON_F_XXXX (3) ] Reserved for
+    feature XXXX.
 \end{description}
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How to get it in the spec?

● git clone https://github.com/oasis-tcs/virtio-spec
Edit :)

● sh makeall.sh (needs xelatex, e.g. from texlive)
● virtio-comment-subscribe@lists.oasis-open.org
● Patch: virtio-comment@lists.oasis-open.org
● If no comments – email, ask for a vote ballot
● Total time: up to 2 weeks

https://github.com/oasis-tcs/virtio-spec
mailto:virtio-comment-subscribe@lists.oasis-open.org
mailto:virtio-comment@lists.oasis-open.org
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IPR compatibility: allow others to 
implement compatible devices

● Open-source an implementation
● Subscribe to virtio-dev@lists.oasis.org
● Agree to IPR rules (non-assertion mode)
● Send a copy of the patches (e.g. qemu, linux, 

dpdk) to virtio-dev@lists.oasis.org
● Virtio memory and IOMMU at this point now.

mailto:virtio-dev@lists.oasis.org
mailto:virtio-dev@lists.oasis.org
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Interface compatibility

● Document assumptions for inter-operability
● Submit as comments
● Virtio membership is not required
● Membership is open - members vote on ballots
● Hints:

– Document device and driver separately
– Use MUST/SHOULD/MAY keywords
– Ask for help!

● Virtio crypto, input, gpu added recently
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Work-in-progress

● Platform and hardware specific optimizations
● Vendor-specific issues
● New transports
● New devices
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Hardware is special

● Let’s assume a pass-through device 
implementing virtio. Shouldn’t this just work?

● Maybe – but not optimally!
● Hypervisor: processes descriptors one by one
● Hardware: can process many in parallel
● Needs to be told how many are available
● Include number of available entries in a kick
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Platform issues

● Hardware Virtio device behind a PCI bus:

wmb()
dma_wmb()

● Software Virtio device:

interrupt
smp_wmb()
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Cross-vendor compatibility

● Modular interface controlled by feature bits
● Drivers can limit to a subset for consistency

● Report negotiated features:
– cat /sys/bus/pci/devices/0000\:01\:00.0/features

● TODO: report device features
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Device quirks

● Don’t do it!
● Mask affected features
● Treat it as a feature

Document in spec
● Blacklist device, use a vendor-specific driver
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CFA: transports

● Vhost-user: virtio over unix domain sockets
– QEMU
– DPDK
– SPDK
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WIP: devices

● Memory device
● IOMMU device
● 9PFS?
● Audio anyone?
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MST’s inbox

● Balloon: page hinting capability
● GPU: EDID reporting
● Network: RSC
● Block: discard+write zeroes
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Virtio 1.1 plans

● Freeze spec by end of November 2018
● Public review draft by end of year
● Public review to run until early next year
● Monthly draft snapshots planned
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Summary

● Network effects and a set of unique properties 
make Virtio a compelling option for new interfaces
– Large Software and Hardware ecosystem

● Join the fun
– Easy to extend
– A lot going on
– Performance + new features
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Questions?
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Virtio input: add multitouch feature

● Feature bit: VIRTIO_INPUT_F_MULTITOUCH = 0
● New (multi-touch aware) device: device features = 0x1
● New driver: supported features = 0x1
● Driver features: 0x1 & 0x1 = 0x1
● Device and driver:

if (driver_features &
            (1 << VIRTIO_INPUT_F_MULTITOUCH))
     enable multi-touch support

● Updated device & driver: multi-touch enabled! 
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Compatibility: existing drivers

● Device features = 0x1
● Driver supported = 0x0
● Driver features = 0x0
● 0x0 &  (1 << VIRTIO_INPUT_F_MULTITOUCH) == 0

● Device: option 1: disable multi-touch: compatible!
● Device: option 2: set status = fail

Not worse than building a new device!
Can suggest upgrading a driver.
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Compatibility: existing devices

● Device features: 0x0
● Driver supported: 0x1
● Driver features: 0x0
● 0x0 &  (1 << VIRTIO_INPUT_F_MULTITOUCH) == 0

● Driver: option 1: disable multi-touch
● Driver: option 2: set status = fail

Can suggest upgrading a device.
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